首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The film-forming properties of chitosan, chitosan glutamate, sodium alginate, and hydroxypropyl methylcellulose (HPMC) were investigated. Films were produced by a casting/solvent evaporation method from plasticizer-free and plasticizer-containing aqueous solutions. The water vapor transmission and mechanical properties (puncture strength and % elongation) of the films were investigated as a function of the polymer type and viscosity, plasticizer type (glycerin, propylene glycol, polyethylene glycol, triethyl citrate), plasticizer concentration, and type and concentration of acid used to dissolve chitosan. The effect of storage humidity was also examined. Glycerin and water were good plasticizers for chitosan glutamate. The chitosan film properties were dependent on the type and concentration of acid used to dissolve it, citric acid being a good plasticizer. The mechanical and water vapor transmission properties of alginate and HPMC films were less influenced by the investigated variables.  相似文献   

2.
Abstract

The film-forming properties of chitosan, chitosan glutamate, sodium alginate, and hydroxypropyl methylcellulose (HPMC) were investigated. Films were produced by a casting/solvent evaporation method from plasticizer-free and plasticizer-containing aqueous solutions. The water vapor transmission and mechanical properties (puncture strength and % elongation) of the films were investigated as a function of the polymer type and viscosity, plasticizer type (glycerin, propylene glycol, polyethylene glycol, triethyl citrate), plasticizer concentration, and type and concentration of acid used to dissolve chitosan. The effect of storage humidity was also examined. Glycerin and water were good plasticizers for chitosan glutamate. The chitosan film properties were dependent on the type and concentration of acid used to dissolve it, citric acid being a good plasticizer. The mechanical and water vapor transmission properties of alginate and HPMC films were less influenced by the investigated variables.  相似文献   

3.
The mechanical properties of polymer films used in pharmaceutical coatings of pulsatile drug delivery systems were evaluated in the dry and the wet state by a newly developed puncture test, which allowed the time-dependent measurement of the mechanical properties on the same film specimen. Force, puncture strength, energy at break, modulus, and strain were investigated as a function of water exposure time with respect to the type of polymer and the type and concentration of plasticizer and pore former (hydroxypropyl methylcellulose, HPMC). Eudragit® RS films were very flexible, had a high strain, and broke upon puncture with only small cracks. In contrast, ethylcellulose films were more brittle with a lower strain and showed complete film rupture. Increased amounts of the hydrophilic pore former, HPMC, resulted in a reduced puncture strength and in an increase in water uptake and weight loss of the films. The puncture strength decreased with increasing plasticizer concentration and was lower with the lipophilic dibutyl sebacate than with the hydrophilic triethyl citrate.  相似文献   

4.
Free films produced with cellulose acetate (CA) pseudolatex were prepared by the casting method. The effects of plasticizer concentration, drying temperature, and drying time on drug permeability and mechanical properties of free films were investigated by three-factor spherical second-order composite experimental design. The results were analyzed by the multivariable regression method. The experimental results indicated that plasticizer concentration, drying temperature, and drying time had complex effects on free film permeability and mechanical behavior. These results probably arise from the film-forming ability of CA pseudolatex particles at various conditions and the evaporation of plasticizer during the film-forming process  相似文献   

5.
Eudragit RL and RS pseudolatices were prepared by the solvent change technique, which consisted of dissolving the polymer in a water miscible organic solvent or in a mixed water miscible organic solvent system, followed by dispersian in deionized water under mild agitation. The organic solvent (s) was removed from the aqueous organic solution to leave a stable Eudragit latex.

Eudragit pseudolatex coated theophylline pellets were prepared in a fluidized-bed coating machine. The effects of polymer type and coating level, plasticizer concentration, and PH of the dissolution medium on drug release were investigated. The higher content of quaternary ammonium groups attached to the polymer backbone make the coatings produced from Eudragit RL too water sensitive; and hence unsuitable for controlling theophylline release. On the other hand, Eudragit RS films retarded theophylline release. On the other hand, Eudragit RS films retarded theophylline release over a wide pH range. Release of the drug was found to be a function of the polymer coating level, plasticizer concentration and dependent on pH of the dissolution medium.  相似文献   

6.
The influences of aqueous polymeric subcoats and pellet composition on the release properties of a highly water-soluble drug, chlorpheniramine maleate (CPM), from enteric coated pellets were investigated. Three different aqueous polymeric subcoats, Eudragit® RD 100, Eudragit® RS 30D, and Opadry® AMB, were applied to 10% w/w CPM-loaded pellets that were then enteric coated with Eudragit® L 30D-55. Observed drug release from the coated pellets in acidic media correlated with water vapor transmission rates derived for the subcoat films. The influence of pellet composition on retarding the release of CPM from enteric coated pellets in 0.1 N HCl was investigated. The rate of drug release was greatest for pellets prepared with lactose, microcrystalline cellulose, or dibasic calcium phosphate compared with pellets formulated with citric acid and microcrystalline cellulose. Citric acid reduced the pellet micro-environmental pH, decreasing the amount of drug leakage in 0.1 N HCL during the first 2 hr of dissolution. Polymer flocculation was observed when CPM was added to the Eudragit L 30D-55 dispersion. An adsorption isotherm was generated for mixtures of CPM and the polymer and the data were found to fit the Freundlich model for adsorption. Adsorption of CPM to the polymer decreased with the addition of citric acid to the drug-polymer mixtures.  相似文献   

7.
The concentration of hypromellose (HPMC) is known to significantly impact the viscosity of coating solutions. The purpose of this study was to determine the viscosity of novel low-molecular-weight (LMW) HPMC products as a function of polymer concentration. The mechanical properties and water vapor permeability of free films prepared from these novel LMW HPMC polymers were also determined and the results were compared with films prepared with conventional HPMC. Solutions of LMW and conventional HPMC 2910 and 2906 containing up to 40% polyethylene glycol (PEG) 400 were prepared and the viscosities were measured using a Brookfield viscometer. Solutions were then cast onto glass plates and stored at 30?C and 50% relative humidity until films were formed. A Chatillon digital force gauge attached to a motorized test stand was used to quantify the mechanical properties of the films, whereas water vapor permeabilities were determined according to the ASTM E96 M-05 water method. As expected, the novel LMW polymer solutions exhibited significantly lower viscosities than the conventional comparators at equivalent polymer concentrations. Film strength of the LMW materials was lower than films prepared from the conventional HPMC solutions, although this effect was not as evident for the HPMC 2906 chemistry. Increasing concentrations of the plasticizer resulted in decreased tensile strength and Young?s modulus and increased elongation as well as increased water vapor permeability, irrespective of polymer type. No statistical difference was found between the tensile strength to Young?s modulus ratios of the F chemistry LMW and conventional HPMC polymer films.  相似文献   

8.
Controlled release tablets containing a poorly water-soluble drug, indomethacin (IDM), acrylic polymers (Eudragit® RD 100, Eudragit® L 100, or Eudragit® S 100), and triethyl citrate (TEC) were prepared by hot-melt extrusion. The physicochemical and IDM release properties of the controlled release hot-melt extrudates were investigated. Indomethacin (IDM) was found to be both thermally and chemically stable following hot-melt extrusion processing and displayed a plasticizing effect on Eudragit® RL PO as demonstrated by a decrease in the glass transition temperatures of the polymer. The inclusion of either Pluronic® F68, Eudragit® L 100, or Eudragit® S 100 in the powder blend containing Eudragit® RD 100 prior to processing increased the rate of release of the IDM from the extrudates. An increase in the media pH and a decrease in the granule particle size also increased the rate of release of IDM. The inclusion of TEC up to 8% in the granule formulation or compressing the granules into tablets had no significant effect on the drug release rate. Indomethacin (IDM) was transformed from a crystalline Form I into an amorphous form in the Eudragit® RD 100 granules following hot-melt extrusion. The thermal processing facilitated the formation of a solid solution with a continuous matrix structure that was shown to control drug diffusion from the extrudates.  相似文献   

9.
Free films of hydroxypropylmethylcellulose were prepared by a spraying technique. Methocel E5 and Methocel E15 were used in varying proportions in the preparation of films. The free films were studied for their mechanical properties and moisture permeability characteristics. A 22 factorial design was used to quantitate the effect of each polymer on the tensile strength and permeability constant of the films.  相似文献   

10.
Hydroxypropyl methylcelluose phthalate 50 (HPMCP 50) was evaluated as a film forming polymer from aqueous dispersion systems. The influence of plasticizer type and level on the elasticity of HPMCP 50 free films prepared by the casting method was studied by measuring Young's modulus using an Instron Material Testing System. The release of a water soluble drug in various dissolution media from pellets coated with HPMCP 50 with 30% plasticizer containing various levels of hydroxypropyl cellulose (HPC) or hydroxypropyl methylcellulose (HPMC) was also studied. The influence of coating level on drug release from pellets was also investigated. Results showed that HPMCP 50 alone without a plasticizer does not form a film. However, when a plasticizer was added HPMCP 50 did form a film. Also, as the concentration of the plasticizer triethyl citrate was increased the elasticity of HPMCP 50 films was increased. Similar results were obtained with the plasticizer diethyl phthalate. For pellets a high coating level was required to achieve adequate protection in 0.06 N HCl. Drug release from coated pellets was found to be dependent upon the type and the level of the water soluble polymer incorporated with HPMCP 50. Drug release was increased as the percentage of HPC was increased. Higher release rates were obtained with HPMC compared to HPC. Coating level significantly influenced drug release in 0.06 N HCl; however, less of an effect was observed at pH 5.5.  相似文献   

11.
Abstract

Hydroxypropyl methylcelluose phthalate 50 (HPMCP 50) was evaluated as a film forming polymer from aqueous dispersion systems. The influence of plasticizer type and level on the elasticity of HPMCP 50 free films prepared by the casting method was studied by measuring Young's modulus using an Instron Material Testing System. The release of a water soluble drug in various dissolution media from pellets coated with HPMCP 50 with 30% plasticizer containing various levels of hydroxypropyl cellulose (HPC) or hydroxypropyl methylcellulose (HPMC) was also studied. The influence of coating level on drug release from pellets was also investigated. Results showed that HPMCP 50 alone without a plasticizer does not form a film. However, when a plasticizer was added HPMCP 50 did form a film. Also, as the concentration of the plasticizer triethyl citrate was increased the elasticity of HPMCP 50 films was increased. Similar results were obtained with the plasticizer diethyl phthalate. For pellets a high coating level was required to achieve adequate protection in 0.06 N HCl. Drug release from coated pellets was found to be dependent upon the type and the level of the water soluble polymer incorporated with HPMCP 50. Drug release was increased as the percentage of HPC was increased. Higher release rates were obtained with HPMC compared to HPC. Coating level significantly influenced drug release in 0.06 N HCl; however, less of an effect was observed at pH 5.5.  相似文献   

12.
Oat starch films were prepared by casting using glycerol, sorbitol, glycerol–sorbitol mixture, urea and sucrose as plasticizers. The effects of these plasticizers on the microstructure, moisture sorption, water vapor permeability (WVP) and mechanical properties were investigated using films stored under a range of relative humidities. The plasticizer type did not affect significantly (p  0.05) the equilibrium moisture content of films, except at 90% relative humidity (RH). Films without plasticizer adsorbed less water and showed higher WVP than plasticized ones, indicating the antiplasticizing effect observed in this work. In general, a decrease in stress at break and Young's modulus and an increase in strain at break were observed when RH increased in all film formulations. Films without plasticizer showed higher stress at break values than the plasticized ones and presented stable strain at break under a range of RH. Sucrose films were the most fragile at low RH while glycerol films were the most hygroscopic.  相似文献   

13.
Rosin-based polymers (R-1 and R-2) were synthesized and characterized for physicochemical properties, molecular weight (Mw), polydispersity (Mw/Mn), glass transition temperature (Tg), and thermogravimetry (TGA). Films of the polymers were cast on a mercury substrate by solvent evaporation technique. Free films were characterized for surface topography by scanning electron microscopy (SEM), water vapor transmission rate (WVTR), tensile strength, percentage elongation, and modulus of elasticity. The polymers were further evaluated as film coating materials by evaluating drug release from coated pellets with diclofenac sodium as a model drug. Drug was loaded on non-pareil seeds by a solution-layering technique and coated with varying concentrations of polymer solutions. Sustained release of the drug was observed from coated pellets. The newly synthesized rosin-based polymers promise considerable utility for pharmaceutical coating.  相似文献   

14.
The leaching of water-soluble plasticizers from polymeric films prepared by casting and drying of plasticized colloidal polymer dispersions was investigated with respect to the type and concentration of plasticizer (triethyl citrate or triacetin), film thickness, type of colloidal polymer dispersions (acrylic: Eudragit RS30D, RL30D, or L30D; cellulosic: Aquacoat), Eudragit RS30D/RL30D ratio, and method of film preparation (solvent- or pseudolatex-casting). The leaching increased with increasing level of plasticizer as indicated by an increase in the release rate constant while the release rate constant was independent of the film thickness. The leaching was more rapid from Aquacoat films than from Eudragit RS30D films at all plasticizer concentrations. Increasing the amount of the more hydrophilic polymer dispersion, Eudragit RL30D, in mixed Eudragit RS/RL films increased the rate of leaching. The incorporation of propranolol HCl into the polymeric films significantly increased the leaching rate constant when compared to drug-free films. The leaching from pseudolatex-cast films was faster when compared to the leaching from solvent-cast films due to the denser structure of the solvent-cast films.  相似文献   

15.
Abstract

The mechanical properties of polymer films used in pharmaceutical coatings of pulsatile drug delivery systems were evaluated in the dry and the wet state by a newly developed puncture test, which allowed the time-dependent measurement of the mechanical properties on the same film specimen. Force, puncture strength, energy at break, modulus, and strain were investigated as a function of water exposure time with respect to the type of polymer and the type and concentration of plasticizer and pore former (hydroxypropyl methylcellulose, HPMC). Eudragit® RS films were very flexible, had a high strain, and broke upon puncture with only small cracks. In contrast, ethylcellulose films were more brittle with a lower strain and showed complete film rupture. Increased amounts of the hydrophilic pore former, HPMC, resulted in a reduced puncture strength and in an increase in water uptake and weight loss of the films. The puncture strength decreased with increasing plasticizer concentration and was lower with the lipophilic dibutyl sebacate than with the hydrophilic triethyl citrate.  相似文献   

16.
The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds (≥2000 rpm), the thicknesses of the films agree well with the scaling predicted by the model of Meyerhofer, when methanol or ethanol are used as solvent. The films exhibit uniaxial optical anisotropy with a higher in-plane refractive index, indicating a preferred orientation of the polymer chains in this in-plane direction. The radial shear forces that occur during the spin-coating process do not affect the refractive index and the extent of anisotropy. The anisotropy is due to internal stresses within the thin confined polymer film that are associated with the preferred orientations of the polymer chains. The internal stresses are reduced in the presence of a plasticizer, such as water or an organic solvent, and increase to their original value upon removal of such a plasticizer.  相似文献   

17.
Abstract

The leaching of water-soluble plasticizers from polymeric films prepared by casting and drying of plasticized colloidal polymer dispersions was investigated with respect to the type and concentration of plasticizer (triethyl citrate or triacetin), film thickness, type of colloidal polymer dispersions (acrylic: Eudragit RS30D, RL30D, or L30D; cellulosic: Aquacoat), Eudragit RS30D/RL30D ratio, and method of film preparation (solvent- or pseudolatex-casting). The leaching increased with increasing level of plasticizer as indicated by an increase in the release rate constant while the release rate constant was independent of the film thickness. The leaching was more rapid from Aquacoat films than from Eudragit RS30D films at all plasticizer concentrations. Increasing the amount of the more hydrophilic polymer dispersion, Eudragit RL30D, in mixed Eudragit RS/RL films increased the rate of leaching. The incorporation of propranolol HCl into the polymeric films significantly increased the leaching rate constant when compared to drug-free films. The leaching from pseudolatex-cast films was faster when compared to the leaching from solvent-cast films due to the denser structure of the solvent-cast films.  相似文献   

18.
Nanocellulosic-xylan films were prepared employing oat spelt xylan, cellulose whiskers and a plasticizer. The mechanical properties of the films were evaluated using tensile testing under controlled temperature and humidity conditions. The tensile data showed that the addition of sulfonated cellulose whiskers lead to a substantial improvement in strength properties. Addition of 7 wt% of sulfonated whiskers increased the tensile energy absorption of xylan films by 445% and the tensile strength of the film by 141%. Furthermore, films to which 7% cellulose whiskers were added showed that nanocellulose whiskers produced with sulfuric acid (sulfonated whiskers) were significantly better at increasing film strength than cellulose whiskers produced by hydrochloric acid hydrolysis of cellulosic fibers.  相似文献   

19.
Many factors are capable of influencing the mechanism of drug release from pellets prepared by extrusion-spheronization. This study was designed to elucidate the effect of polymer type and loading and the effect of processing variables on the rate and mechanism of drug release from ibuprofen pellets coated using aqueous polymeric dispersions. Qualitative and quantitative assessment of the success of the film coating process and the quality of the resultant films is made using scanning electron microscopy and in-vitro dissolution testing. The importance of plasticizer in polymeric film formation is also discussed. Uncoated pellets containing 60, 70 and 80% ibuprofen were coated with aqueous polymeric dispersions of polymethacrylates, ethylcellulose and silicone elastomer films. The high drug loading of these pellets adds special interest to this study. Drug release from uncoated pellets appears to follow first-order kinetics. The application of a polymeric membrane to uncoated cores has the effect of retarding drug release. There appears to be a critical coating level below which core coverage by the polymer is incomplete, drug release is diffusion controlled and first-order release kinetics are observed. Above a defined polymer level, drug release appears to be membrane controlled and zero-order kinetics are observed. The presence of plasticizer in the polymeric film imparts a hydrophilic component to an otherwise hydrophobic membrane. This enhances the penetration of aqueous solvent into the pellet core during in-vitro dissolution testing, increasing the rate of drug release. Scanning electron micrographs reveal the nature of these hydrophilic pores, beneath which a fine tortuous skeletal network of drug-depleted core is exposed.  相似文献   

20.
Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity – RH (6–52%) and temperature (3–45°C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45°C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号