首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of motor unit action potential trains (MUAPT) of distinct motor units (MU) to the crosscorrelation function between myoelectric signals (MES) recorded at the skin surface is studied. In specific, the significance of the correlation between the firing activity of concurrently active MUs (which results in cross-terms in the overall correlation function) is compared to the representation obtained using the contributions of single MUs at each recording site (auto-terms). A model for the generation of surface MUAPs is combined with the generation of MU firing statistics in order to obtain surface MUAPTs. MU firing statistics are simulated to incorporate MU synchronization levels reported in the literature. Alternatively, experimental firing statistics are fed to the model generating the MUAPTs. The contribution of individual MU pairs to the global myoelectric signal correlation function is assessed. Results indicate that the cross-terms from different MUs decrease steadily contributing very little to the overall correlation for record lengths as short as 30 s. Thus, the error expected when computing the crosscorrelation function between two channels of MES as the superposition of the auto-terms contributed by single MUs (i.e., ignoring the cross-terms from different MUs) is shown to be very small.  相似文献   

2.
A procedure for the storage and documentation of myoelectric signals has been developed that consists of a selective needle signal detection protocol, a data collection-compression routine, an adaptive signal decomposition algorithm, and an error filter. The collection-compression routine stores only fixed-length signal epochs that contain motor unit action potentials (MUAPs) detected during individual motor unit firings. The decomposition algorithm assigns the collected MUAPs to candidate motor units, based on template matching using power-spectrum domain features and firing-time criteria calculated from the motor units' firing statistics. Power spectrum features allow the use of Nyquist sampling rates and remove the need for template alignment. The algorithm is adaptive and attempts to minimize dependent errors. The error filter, using firing statistics, accounts for unresolved superpositions and other decomposition errors. Using a standard TECA single-fiber needle electrode, signal recorded during isometric, constant, or slow force-varying contractions of up to 50% of the maximal voluntary contraction level, have been successfully analyzed  相似文献   

3.
The electromyographic (EMG) signal provides information about the performance of muscles and nerves. At any instant, the shape of the muscle signal, motor unit action potential (MUAP), is constant unless there is movement of the position of the electrode or biochemical changes in the muscle due to changes in contraction level. The rate of neuron pulses, whose exact times of occurrence are random in nature, is related to the time duration and force of a muscle contraction. The EMG signal can be modeled as the output signal of a filtered impulse process where the neuron firing pulses are assumed to be the input of a system whose transfer function is the motor unit action potential. Representing the neuron pulses as a point process with random times of occurrence, the higher order statistics based system reconstruction algorithm can be applied to the EMG signal to characterize the motor unit action potential. In this paper, we report results from applying a cepstrum of bispectrum based system reconstruction algorithm to real wired-EMG (wEMG) and surface-EMG (sEMG) signals to estimate the appearance of MUAPs in the Rectus Femoris and Vastus Lateralis muscles while the muscles are at rest and in six other contraction positions. It is observed that the appearance of MUAPs estimated from any EMG (wEMG or sEMG) signal clearly shows evidence of motor unit recruitment and crosstalk, if any, due to activity in neighboring muscles. It is also found that the shape of MUAPs remains the same on loading.  相似文献   

4.
Concurrently active motor units (MUs) of a given muscle can exhibit a certain degree of synchronous firings, and a certain degree of common variation in their firing rates. The former property is referred to as motor unit synchrony in the literature, which is termed motor unit innervation process (MUIP) correlation in this study. The latter is referred to as motor unit common drive and can be quantified by the common drive coefficient, which is the correlation coefficient between the smoothed firing rates of the two MUs. Both properties have important roles and implications in the generation and resulting characteristics of the myoelectric signal and for the development of signal processing algorithms in myoelectric signal (MES) applications. In order to study these implications and characteristics, in this paper estimation procedures are developed to quantify the degree of MUIP correlation and common drive as functions of physiological parameters. Also, the interaction between MUIP correlation and motor unit common drive is studied in a physiologically realistic simulation model. Neurons modeled by Hodgkin-Huxley systems form the framework of the simulation model in which excitation and synaptic characteristics can be modified. MUIP correlation and common drive degree and interaction are studied through a number of simulations. To support the simulation results, experimental in vivo motor unit trains were collected at low levels of contraction from 11 subjects, and decomposed into the constituent unit trains giving 50 concurrently active motor unit pairs. The simulation demonstrated that the innervation process correlation coefficient is controlled primarily by the postsynaptic conductance, gsyn, and was less than 0.05 mS/cm2 for realistic values of gsyn. The common drive was found to be controlled by the exciting neuron input with no statistically significant interaction between it and the MUIP correlation. The experimental data gave results in close agreement with those of the simulation.  相似文献   

5.
Multiscale nature of network traffic   总被引:1,自引:0,他引:1  
The complexity and richness of telecommunications traffic is such that one may despair to find any regularity or explanatory principles. Nonetheless, the discovery of scaling behavior in teletraffic has provided hope that parsimonious models can be found. The statistics of scaling behavior present many challenges, especially in nonstationary environments. In this article, we overview the state of the art in this area, focusing on the capabilities of the wavelet transform as a key tool for unraveling the mysteries of traffic statistics and dynamics  相似文献   

6.
PCNN参数自适应设定及其模型的改进   总被引:2,自引:0,他引:2       下载免费PDF全文
邓翔宇  马义德 《电子学报》2012,40(5):955-964
 脉冲耦合神经网络(PCNN)模型在数字图像处理中有着广泛应用,但基本都是从网络的外在特性出发并结合一定的实际应用对其进行研究和改进,缺乏对模型本身数学特性的分析.本文从PCNN模型的迭代方程出发,对无耦合连接和耦合连接两种状态下的PCNN数学模型进行了点火机理分析,揭示了PCNN模型本身的数学耦合特性(点火阶梯)以及其对网络生物学特性(脉冲发放特性)会造成干扰和影响的现象,并分析了这种干扰和影响产生的机理和消除方法,同时提出PCNN用于图像分割时参数自适应设定的方法.最后给出了更能体现神经网络生物学特性的PCNN改进模型,将其用于Lena等图像的分割处理中,取得了良好的效果.  相似文献   

7.
Methods for the simulation of the nonstationary behavior of computer networks are discussed. Steady-state performance measures, typically computed over time histories, are modified to be applicable to the nonstationary case by redefining the measures as ensemble statistics. The application of well-known ensemble simulation techniques to determining the modified performance metrics from finite ensembles generated by independent replications is given. The simulation methods are illustrated with a comprehensive tutorial example and with a performance study which gives results for a shared buffer switch  相似文献   

8.
The complex ambiguity function based on second-order statistics (CAF-SOS) has been used to simultaneously estimate the frequency-delay of arrival (FDOA) and time-delay of arrival (TDOA) between two signal measurements; its performance, however, is sensitive to the correlation between two additive noise sources. When the noise sources are assumed to be Gaussian, we develop a new complex ambiguity function based on higher order statistics (CAF-HOS) that reduces the unknown noise-correlation effect. The new CAF-HOS algorithm utilizes nonstationary higher order cross cumulant estimates and their Fourier transform. In fact, we suggest a nonstationary estimate of fourth-order cross-cumulants and obtain the analytical expressions for its mean value and variance. We compare the analytical expressions with results obtained by Monte Carlo runs. Also, we compare the performance of the new complex ambiguity function based on fourth-order statistics (CAF-FOS) against the CAF-SOS algorithm using different Gaussian noise sources, different signals of interest, different signal-to-noise ratios, and different lengths of data  相似文献   

9.
A technique has been developed which enables the decomposition (separation) of a myoelectric signal into its constituent motor unit action potential trains. It consists of a multichannel (via one electrode) myoelectric signal recording procedure, a data compression algorithm, a digital filtering algorithm, and a hybrid visual-computer decomposition scheme. The algorithms have been implemented on a PDP 11/34 computer. Of the four major segments of the technique, the decomposition scheme is by far the most involved. The decomposition algorithm uses a-sophisticated template matching routine and details of the firing statistics of the motor units to identify motor unit action potentials in the myoelectric signal, even when they are super-imposed with other motor unit action potentials. In general, the algorithms of the decomposition scheme do not run automatically. They require input from the human operator to maintain reliability and accuracy during a decomposition.  相似文献   

10.
In this study, power spectral density functions (PSDF's) were computed of interference EMG of various facial and jaw-elevator muscles during nonfatiguing submaximal static contractions, recorded with surface electrodes. A distinct peak was found in the PSDF's in the frequency region below 40 Hz. It was shown that the peak was due to genuine EMG activity and that it could not be considered as an artifact, which was caused by electrode displacements during contraction. An increase of contraction strength resulted in a shift of the peak to higher frequencies and a decrease of peak amplitude relative to the power spectral estimates above 40 Hz, which were shown to be determined by the shape of the motor unit (MU) action potentials. In accordance with mathematical models of the EMG PSDF, it was demonstrated that the peak indicates the dominant firing rate of the sampled MU's. Our results suggest that this can be defined as the firing rate of the first recruited low-threshold MU's, which may be expected to dominate the interference EMG signal because of their preponderance in number. The data further suggest that the peak can be more readily observed in PSDF's of facial and jaw-elevator muscles than in PSDF's of limb muscles. This might be related to differences in MU firing statistics.  相似文献   

11.
Basic statistics of a nonstationary time series are estimated from its single realization. The estimates are represented in the form of a recurrent procedure forming residual time series and smoothing them with the help of effective models of digital data filtering or a locally weighted polynomial regression. The concept of local time weighting and robust weighting of residual series is generalized on the basis of a rational combination of models of distance-weighted least squares and an exponentially weighted regression. The estimation of trends, volatility, and autocorrelation for time series of companies’ sales volumes and the price dynamics of stock assets is simulated, and the results of simulation are presented.  相似文献   

12.
The realization of a universal low-cost controller for electric motors in CMOS technology with programmable characteristic curves is presented. With regard to the required chip area of 2.7 mm2 in a 1.6 μm, 40 nm technology, the general advantage in comparison to microcontroller-based solutions lies in the low factory costs. The analog dc power supply is generated directly from the 230 V ac power line. An on-chip functional unit controls the firing current for the off-chip motor driving triac. Features of this functional unit are torque control and overload protection, firing, and post firing control. A new method was used to implement programmable multidimensional characteristic curves which are temperature and technology insensitive. In the actual controller application for a drilling machine motor, the mask-programmed curve shapes have been generated with the help of fuzzy algorithms. An impression of the reproducibility of multidimensional characteristic curves in manufacturing, as well as the accuracy of their precalculation, is given by introducing simulated and measured statistics of the actual design  相似文献   

13.
To be clinically viable, a brain-machine interface (BMI) requires transcutaneous telemetry. Spike-based compression algorithms can be used to reduce the amount of telemetered data, but this type of system is subject to queuing-based transmission delays. This paper examines the relationships between the ratio of output to average input bandwidth of an implanted device and transmission latency and required queue depth. The examination was performed with a computer model designed to simulate the telemetry link. The input to the model was presorted spike data taken from a macaque monkey performing a motor task. The model shows that when the output bandwidth/average input bandwidth is in unity, significant transmission latencies occur. For a 32-neuron system, transmitting 50 bytes of data per spike and with an average neuron firing rate of 8.93 spikes/s, the average maximum delay was approximately 3.2 s. It is not until the output bandwidth is four times the average input bandwidth that average maximum delays are reduced to less than 10 ms. A comparison of neuron firing rate and resulting latencies shows that high latencies result from neuron bursting. These results will impact the design of transcutaneous telemetry in a BMI.  相似文献   

14.
An accurate model of the nonstationary geometrical response of a camera-collimator system is discussed. The algorithm is compared to three other algorithms that are specialized for region-of-interest evaluation, as well as to the conventional method for summing the reconstructed quantity over the regions of interest. For noise-free data and for regions of accurate shape, least-squares estimates were unbiased within roundoff errors. For noisy data, estimates were still unbiased but precision worsened for regions smaller than resolution: simulating typical statistics of brain perfusion studies performed with a collimated camera, the estimated standard deviation for a 1-cm-square region was 10% with an ultra-high-resolution collimator and 7% with a low-energy all-purpose collimator. Conventional region-of-interest estimates show comparable precision but are heavily biased if filtered backprojection is used for image reconstruction. Using the conjugate-gradient iterative algorithm and the model of nonstationary geometrical response, bias of estimates decreased on increasing the number of iterations, but precision worsened, thus achieving an estimated standard deviation of more than 25% for the same 1-cm region.  相似文献   

15.
In this paper, a feature extraction scheme for a general type of nonstationary time series is described. A non-stationary time series is one in which the statistics of the process are a function of time; this time dependency makes it impossible to utilize standard globally derived statistical attributes such as autocorrelations, partial correlations, and higher order moments as features. In order to overcome this difficulty, the time series vectors are considered within a finite-time interval and are modeled as time-varying autoregressive (AR) processes. The AR coefficients that characterize the process are functions of time that may be represented by a family of basis vectors. A novel Bayesian formulation is developed that allows the model order of a time-varying AR process as well as the form of the family of basis vectors used in the representation of each of the AR coefficients to be determined. The corresponding basis coefficients are then invariant over the time window and, since they directly relate to the time-varying AR coefficients, are suitable features for discrimination. Results illustrate the effectiveness of the method  相似文献   

16.
This paper describes an algorithm to suppress composite noise in a two‐microphone speech enhancement system for robust hands‐free speech communication. The proposed algorithm has four stages. The first stage estimates the power spectral density of the residual stationary noise, which is based on the detection of nonstationary signal‐dominant time‐frequency bins (TFBs) at the generalized sidelobe canceller output. Second, speech‐dominant TFBs are identified among the previously detected nonstationary signal‐dominant TFBs, and power spectral densities of speech and residual nonstationary noise are estimated. In the final stage, the bin‐wise output signal‐to‐noise ratio is obtained with these power estimates and a Wiener post‐filter is constructed to attenuate the residual noise. Compared to the conventional beamforming and post‐filter algorithms, the proposed speech enhancement algorithm shows significant performance improvement in terms of perceptual evaluation of speech quality.  相似文献   

17.
Two neural network implementations are applied to myoelectric signal (MES) analysis tasks. The motivation behind this research is to explore more reliable methods of deriving control for multidegree of freedom arm prostheses. A discrete Hopfield network is used to calculate the time series parameters for a moving average MES model. It is demonstrated that the Hopfield network is capable of generating the same time series parameters as those produced by the conventional sequential least squares (SLS) algorithm. Furthermore, it can be extended to applications utilizing larger amounts of data, and possibly to higher order time series models, without significant degradation in computational efficiency. The second neural network implementation involves using a two-layer perceptron for classifying a single site MES based on two features, specifically the first time series parameter, and the signal power. Using these features, the perceptron is trained to distinguish between four separate arm functions. The two-dimensional decision boundaries used by the perceptron classifier are delineated. It is also demonstrated that the perceptron is able to rapidly compensate for variations when new data are incorporated into the training set. This adaptive quality suggests that perceptrons may provide a useful tool for future MES analysis.  相似文献   

18.
As more and more intramuscular electromyogram (EMG) decomposition programs are being developed, there is a growing need for evaluating and comparing their performances. One way to achieve this goal is to generate synthetic EMG signals having known features. Features of interest are: the number of channels acquired (number of detection surfaces), the number of detected motor unit action potential (MUAP) trains, their time-varying firing rates, the degree of shape similarity among MUAPs belonging to the same motor unit (MU) or to different MUs, the degree of MUAP superposition, the MU activation intervals, the amount and type of additive noise. A model is proposed to generate one or more channels of intramuscular EMG starting from a library of real MUAPs represented in a 16-dimensional space using their Associated Hermite expansion. The MUAP shapes, regularity of repetition rate, degree of superposition, activation intervals, etc. may be time variable and are described quantitatively by a number of parameters which define a stochastic process (the model) with known statistical features. The desired amount of noise may be added to the synthetic signal which may then be processed by the decomposition algorithm under test to evaluate its capability of recovering the signal features.  相似文献   

19.
Hidden Markov models (HMMs) represent a very important tool for analysis of signals and systems. In the past two decades, HMMs have attracted the attention of various research communities, including the ones in statistics, engineering, and mathematics. Their extensive use in signal processing and, in particular, speech processing is well documented. A major weakness of conventional HMMs is their inflexibility in modeling state durations. This weakness can be avoided by adopting a more complicated class of HMMs known as nonstationary HMMs. We analyze nonstationary HMMs whose state transition probabilities are functions of time that indirectly model state durations by a given probability mass function and whose observation spaces are discrete. The objective of our work is to estimate all the unknowns of a nonstationary HMM, which include its parameters and the state sequence. To that end, we construct a Markov chain Monte Carlo (MCMC) sampling scheme, where sampling from all the posterior probability distributions is very easy. The proposed MCMC sampling scheme has been tested in extensive computer simulations on finite discrete-valued observed data, and some of the simulation results are presented  相似文献   

20.
Early detection and diagnosis of incipient faults is desirable for online condition assessment, product quality assurance and improved operational efficiency of induction motors running off power supply mains. In this paper, a model-based fault diagnosis system is developed for induction motors, using recurrent dynamic neural networks for transient response prediction and multi-resolution signal processing for nonstationary signal feature extraction. In addition to nameplate information required for the initial setup, the proposed diagnosis system uses measured motor terminal currents and voltages, and motor speed. The effectiveness of the diagnosis system is demonstrated through staged motor faults of electrical and mechanical origin. The developed system is scalable to different power ratings and it has been successfully demonstrated with data from 2.2-, 373-, and 597-kW induction motors. Incremental tuning is used to adapt the diagnosis system during commissioning on a new motor, significantly reducing the system development time  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号