共查询到17条相似文献,搜索用时 92 毫秒
1.
SIFT算法通常用于移动机器人视觉S LAM中。但其算法复杂、计算时间长,影响视觉SLAM的性能。在两方面对SIFT改进:一是用街区距离与棋盘距离的线性组合作为相似性度量;二是采用部分特征方法完成快速匹配。应用扩展卡尔曼滤波器融合SIFT特征信息与机器人位姿信息完成SLAM。仿真实验表明,在未知室内环境下,该算法运行时间短,定位精度高。 相似文献
2.
SIFT特征匹配算法研究 总被引:1,自引:0,他引:1
提取灰度图像的SIFT特征并将其应用于图像检索是目前国内外研究的热点。用距离函数对图像的特征向量进行相似性度量,从而实现SIFT特征向量的匹配。通过实验很好地证明当图像本身的变化(例如大小或者旋转)对于图像的匹配的几乎没有影响。 相似文献
3.
针对SIFT算法的工程实现问题,详细分析了该算法原理和执行过程.在对SIFT算法原理进行分析时,充分结合Rob Hess的SIFT源代码,并将SIFT算法应用到实际图像的特征提取和匹配中.实验结果表明,SIFT算法提取的特征点对图像缩放、视点变化等具有很好的适应性和准确性,可以应用到图像识别及图像重建等领域. 相似文献
4.
基于改进SIFT特征和图转换匹配的图像匹配算法 总被引:1,自引:0,他引:1
针对SIFT特征在纹理丰富的图像中提取较多的伪点和不稳定的点而影响图像匹配的问题, 提出了一种基于Harris阈值准则的局部不变特征图像匹配算法。该算法在提取SIFT不变特征的基础上, 利用Harris阈值准则对所提取到的不变特征进行选择, 剔除了图像区域中大量可区分性较差的特征点, 从而得到了相对稳定和可区分性较好的特征点。其次, 结合不变特征矢量与图转换匹配(GTM)的方法对提取到的稳定特征点进行了精确匹配。实验对比结果表明, 用取得稳定的特征点, 进而结合一种好的匹配策略, 能够更加增强图像匹配的高效性和鲁棒性。 相似文献
5.
为了解决SIFT算法在光照不均环境下匹配效果差的问题,提出了一种融合差分同态滤波算法的SIFT匹配算法(MSHFHS+SIFT算法)。该方法对同态滤波算法进行扩展,推广到多尺度空间,以构建同态滤波金字塔,与SIFT进行融合,利用SIFT算法的特征点提取、描述子生成方法,根据distance-radio准则进行匹配。在各种光照变化环境下的实验证明,该算法较之传统的方法具有更好的鲁棒性。 相似文献
6.
立体匹配是计算机视觉领域最活跃的研究课题之一,针对传统SIFT描述符在图像存在多个相似区域时易造成误匹配和Daisy的匹配效率会因200维的描述符而降低的问题,提出一种SIFT和Daisy相结合的立体匹配算法。该方法利用SIFT算法生成关键特征点,利用Daisy描述符自身具有的良好的旋转不变性,对特征点进行描述,利用特征描述符欧氏距离的最近邻匹配和种子区域增长得到视差图。实验结果表明,该方法匹配精度高,速度快,在部分遮挡、视点变化引起的图像变形等问题上有更好的表现。 相似文献
7.
一种改进的SIFT图像特征匹配算法 总被引:2,自引:0,他引:2
针对传统SIFT图像特征匹配算法因其特征描述算子维度过高而造成的计算量大、实时性差的问题,提出一种基于内核投影的改进SIFT图像特征匹配算法。传统SIFT特征匹配算法采用平滑加权直方图计算特征点的梯度模值和梯度方向。采用内核投影算法对其进行改进,使生成的特征描述算子的维度降低,从而能够提高特征匹配效率。实验结果表明,改进后的SIFT算法具有较高的匹配精度,同时匹配时间有所减少,使实时性得到提高。 相似文献
8.
传统的仿射尺度不变特征(ASIFT)算法通过模拟仿射变化图像实现完全仿射不变性,但是由于尺度不变特征(SIFT)算法本身的低效造成ASIFT的过程非常耗时,为了实现更为高效的图像匹配,引入快速视网膜关键点(FREAK)算法到ASIFT仿射模型中,并基于Lanczos-4插值进行改进。在匹配过程中基于HAMMING距离实现暴力匹配,并结合随机样本一致性(RANSAC)算法改进对匹配点对的提纯,得到了新的AFREAK算法。该算法既能实现完全仿射不变性,又能实现低耗时和低内存占用。实验结果表明,提出的AFREAK算法处理速度上快于ASIFT近2~3倍,并且可以得到与之相似的匹配效果。 相似文献
9.
为解决RANSAC算法迭代次数过多导致图像配准精确率不高的问题,提出了一种改进的RANSAC图像配准算法。首先将参考图像和待配准图像进行NSCT变换分解成低频子带和高频子带。然后对高频子带运用矢量夹角算法和结构相似性(SSIM)来提取图像边缘特征点,对低频子带运用SIFT算法并设定合适的距离阈值来提取特征点。最后利用改进的RANSAC算法提高特征点匹配精度,选择出精匹配点对,实现图像配准。实验结果表明,该算法能有效地找到较多的匹配点对,准确地去除误匹配点对,明显地提高了配准精确度。 相似文献
10.
图像拼接在卫星图像遥感、医学图像处理都具有广泛的应用价值。利用SIFT作为图像局部特征,构建一种基于SIFT特征的仿射计算方法,利用网格覆盖匹配特征点,通过该方法在SIFT匹配特征点中选取仿射点,进而构建相应的仿射变换,通过仿射待选点建立拼接边缘,还给出了不同程度仿射变换的图像拼接方法来解决边缘图像仿射失真的问题。实验结果表明该方法可以克服传统方法的仿射不稳定问题,具有较好的稳定性和准确度。 相似文献
11.
对目前匹配能力很强的基于SIFT特征的图像匹配方法进行研究,并在该方法中加入极线约束,有效去除了大部分虚假匹配。提出以特征匹配与区域匹配相结合、边缘特征与角点特征相结合的立体匹配方法。实验证明该方法不仅能够有效地缩短匹配时间,还能达到较高的匹配精度。 相似文献
12.
改进型SIFT立体匹配算法研究 总被引:1,自引:0,他引:1
针对机器人视觉系统立体匹配中存在的匹配重复或错误等问题,提出了一种基于尺度不变特征变换(Scale Invariant Feature Transform,SIFT算法)和余弦相似度匹配规则的立体匹配方法。该方法以左、右两幅图像中特征向量较多的图像作为基准匹配图像,另一幅图像作为待匹配图像;再由二者的特征向量之间的余弦相似度所建立的匹配规则进行立体匹配。实验结果表明,改进型立体匹配方法有效地降低了匹配错误或重复比,具有较强的鲁棒性,匹配效果较佳,更加有利于机器人视觉系统的三维重建与定位。 相似文献
13.
提出一种基于多尺度特征提取的双目视觉匹配算法,旨在提高传统算法的实时性和鲁棒性。该算法通过设计出一种基于尺度因子变化的高斯核模板尺寸自适应调整以及双目视图的双向配准的办法,以改善特征点匹配效率和精度。实验证明,多尺度特征提取算法能够有效而快速地完成双目视图的特征点匹配。 相似文献
14.
15.
针对目标跟踪问题中目标和场景动态变化的问题,提出了一种结合尺度不变特征变换(SIFT)和光流估计算法并改进模板更新策略的目标跟踪算法。SIFT特征是一种局部特征,具有尺度和旋转不变性。光流场反映的是一种全局特征,表示像素点强度的变化。SIFT特征点可以很好地满足光流估计的条件。实验结果表明这种改进后的目标跟踪算法能应用于部分遮挡的情况,并且相对于传统光流法具有更高的精确度。 相似文献
16.
基于双目立体视觉的复杂背景下的牛体点云获取 总被引:2,自引:0,他引:2
提出一种基于双目立体视觉的复杂背景下的牛体点云获取方法。在点云获取过程中,针对牛不是保持不动的实际情况,采用基于被动视觉技术的双目立体视觉方法;在相机标定过程中,进行单目标定获取相机内部参数,统一标定获取相机外部参数,针对牛体毛色及所处环境复杂的情况,采用基于贝叶斯的皮肤检测算法提取牛体图像,采用基于SIFT的特征点提取和匹配方法实现特征点的匹配,利用计算机视觉中的极线几何原理,剔除误匹配点,通过相机的成像模型求取牛体的三维点云。实验验证了该方法能够在复杂背景下获取牛体点云,并得到较好的点云数据,较好解决了双目立体视觉中相机标定和立体匹配两个较关键和困难的问题。 相似文献
17.
针对SIFT匹配算法和SIFT与RANSAC结合的匹配算法都存在不同程度误匹配的问题,提出一种基于局部SIFT特征点的双阈值匹配算法。设计变步长迭代准则获取SIFT双阈值,其中大阈值匹配获得一组稀疏的精确匹配,小阈值匹配获得一组可能存在误匹配的密集匹配。以精确匹配建立目标的形变约束模型,以此为基础从密集匹配中删除误匹配。通过这些正确的匹配点估计两幅图像之间的变换矩阵。为了降低算法所需时间,提高效率,通过分析图像的纹理变化,采用提取其变化最为剧烈的区域来代表整幅图像进行匹配运算。实验结果表明,该算法在图像存在平移、旋转等仿射变化情况下具有配准精度高,稳定和快速等特点。 相似文献