首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究新疆慕萨莱思自然发酵过程中酵母菌种群表型多样性与其优势菌,探讨慕萨莱思传统工艺对其主要菌群结构的影响。方法:来自于新疆阿瓦提一古作坊的慕萨莱思酿制原料、原料处理液及发酵液(自然发酵过程中)共19份样品被用于酵母菌分离,分离株利用WL培养基培养归类,筛选代表株,对代表株进行形态观察、生理生化特征检测与类平均连算法聚类分析,探讨新疆慕萨莱思自然发酵过程中酵母菌表型多样性及优势菌群。结果:分离得到217株酵母菌,13种WL培养类型,8个表观群。13株代表菌株经初步鉴定为7个属,疑似为13个种,表明慕萨莱思酵母菌具有丰富的多样性。Hanseniaspora spp.为葡萄果皮、果汁及皮渣中的优势菌,S.cerevisiae为慕萨莱思自然发酵过程中起发者及唯一一种优势菌,非酿酒酵母偶尔在发酵液中发现。结论:慕萨莱思酿制过程中,葡萄原料原有的酵母菌经熬煮工序几乎被全部杀死,自然发酵中唯一优势菌S.cerevisiae可能来自酿制场所和设备,并具有较高适应能力。  相似文献   

2.
The activity of wine yeasts to decarboxylate ferulic and p-coumaric acids is one of their biological properties related to the production of phenolic off-flavors (POF) in wine-making. We examined POF productivity in 116 strains of wine yeast, 74 strains of wild yeast (Saccharomyces cerevisiae) and 23 strains of non-Saccharomyces yeast, and found that a majority of these yeasts were POF-producing strains. The frequency distribution of POF-producing strains was 81 to 95% in wine yeasts, 85 to 97% in wild yeasts and 78 to 83% in non-Saccharomyces yeasts based on the POF test with addition of ferulic and p-coumaric acids to grape juice medium. The Rhodotorula, Candida, Cryptococcus, Pichia, Hansenula, and Brettanomyces strains had high or moderate POF productivity among the 20 non-Saccharomyces species. The decomposition rate of ferulic acid correlated with POF production and the critical concentration of phenolic acid (free form) in grape must was estimated to be more than 10 mg/l. Segregation of POF phenotype and Southern blot analysis of phenolic wine yeasts suggest that POF production is controlled by the POF gene (PAD1). The results showed the frequent distribution of phenolic yeasts in the wine-making environment. These suggest the importance of controlling POF production by using wine yeast strains of low POF productivity. The grapes must be prepared by a suitable process to prevent the increase in phenolic acid content.  相似文献   

3.
To analyse the yeast population diversity during wine fermentations, specific fluorescein-labelled oligonucleotide probes targeted to the D1/D2 region of the 26S rRNA of different yeast species known to occur frequently in this environment were designed and tested with reference strains. The probes were then used to identify wine must isolates and to follow, in combination with plate counts, the evolution of yeast populations in two winery fermentations of white and red grape musts. In both cases, a high diversity of non-Saccharomyces yeast species was detected, including Candida stellata, Hanseniaspora uvarum, H. guilliermondii, Kluyveromyces marxianus, K. thermotolerans and Torulaspora delbrueckii. Some of these species (e.g., K. marxianus, K. thermotolerans and T. delbrueckii) were present in significant amounts during the tumultuous fermentation stage, despite the predominance of Saccharomyces cerevisiae cells following the inoculation of the wine musts with a starter strain. To further clarify the yeast population dynamics at the late phase of the fermentations, and because winery conditions do not allow a reliable control of experimental variables, strains isolated from the industrial musts were used to conduct two laboratory microvinifications in synthetic grape juice, using different ratios of S. cerevisiae/non-Saccharomyces in the inocula. Under these conditions, the results were similar to those obtained in the winery, showing a yeast profile with mixed species throughout the first fermentation stage, i.e. until about 40-50% of the total sugar was consumed. Non-Saccharomyces yeasts were outgrown by S. cerevisiae only after ethanol reached concentrations around 4-5% (v/v), which argues in favour of a potential important role of non-Saccharomyces in the final organoleptic characteristics of the wine.  相似文献   

4.
探究非酿酒酵母对葡萄汁中葡萄糖苷类芳香前体物的水解作用,以内蒙古西部地区分离到的具有β-葡萄糖苷酶活性的分属5个属5株酵母菌株为材料,对部分酵母细胞进行胞壁透化处理。随后,采用酿酒酵母(Saccharomyces cerevisiae)单独接种或与非酿酒酵母non-Saccharomyces混合接种的方式进行发酵,探究酿酒酵母与非酿酒酵母混合(1∶1)发酵对发酵进程及发酵液中葡萄糖苷类芳香前体物水解作用的影响。结果表明,除星形假丝酵母(Candida stellata)外,其他3株非酿酒酵母与酿酒酵母混合接种对发酵结果均无明显影响(P>0.05),且均可显著降低发酵液中葡萄糖苷类物质的浓度(P<0.05),其中尤以萄萄汁有孢汉逊酵母(Hanseniaspora uvarum)及异常毕赤酵母(Pichia anomala)的能力最强,葡萄糖苷类物质的浓度分别为3.04 mmol/L和2.66 mmol/L。  相似文献   

5.
目的:探究非酿酒酵母与酿酒酵母混合发酵过程中酵母的生长状况及酯酶活性的变化规律。方法:通过测定川南白酒窖池中分离的非酿酒酵母在液体发酵培养基中的酯酶活性,从中优选1株高产酯酶的酵母,经26S r DNA D1/D2区域序列分析鉴定种属。随后利用模拟葡萄汁进行优选酵母和酿酒酵母的混合发酵,设立同时接种、提前48 h接种和提前96 h接种优选酵母3个实验处理,以两株酵母的纯发酵为对照,研究发酵过程中的酵母生长动力学及不同碳链长度底物(C_2~C_8)对应的酯酶活性变化。结果:优选的非酿酒酵母为发酵毕赤酵母。酵母生长动力学研究发现,单一酿酒酵母的发酵速率最快,但混合发酵中的酵母数量更多,尤其是提前96 h接种。模拟发酵处理中,同时接种处理的酯酶活性累积量最大(574 m U/mL),酯酶活性在C_2~C_8有底物特异性,其中C8酯酶活性累积量最高(178~227 m U/mL),C_2酯酶活性累积量最低(46~66 m U/mL)。结合发酵动力学与发酵中酯酶活性变化,发现酯酶活性与酵母的生长状况有关,当酵母生长达到稳定期,酯酶活性达到最大值。结论:优选酵母与酿酒酵母的同时接种发酵具有较高的C4~C8酯酶活性累积量,有增香酿造的应用潜力。  相似文献   

6.
沙城产区酿酒酵母多样性研究   总被引:1,自引:0,他引:1  
赵静静  李艳 《食品科学》2012,33(5):224-228
对沙城产区龙眼葡萄相关环境中分离筛选的酿酒酵母进行多样性研究。在连续3年(2008、2009、2010年)的实验中,共从葡萄园土壤、葡萄酒厂设备表面、接触过葡萄酒厂设备的葡萄汁和自然发酵过程中采集菌源样品227份,共分离得到1358株酵母菌。用5.8S-ITS区域RFLP方法进行分子水平的分类鉴定及赖氨酸培养基复筛,得到了270株酿酒酵母。再利用Interdelta PCR指纹图谱法将酿酒酵母区分为16类,其中土壤5类,自然发酵过程中第2、3、4期分别得到4类、10类和11类;酒厂设备表面3类;接触酒厂设备的葡萄汁3类。酿酒酵母的种类因样品采集时间、采集地点等不同有明显区别。自然发酵过程中得到的酿酒酵母被认为是本土酵母的可能性最大。  相似文献   

7.
Saccharomyces and non-Saccharomyces yeasts release enzymes that are able to transform neutral compounds of grape berries into active aromatic compounds, a process that enhances the sensory attributes of wines. So far, there exists only little information about enzymatic activity in mixed cultures of Saccharomyces and non-Saccharomyces during grape must fermentations. The aim of the present work was to determine the ability of yeasts to produce extracellular enzymes of enological relevance (β-glucosidases, pectinases, proteases, amylases or xylanases) in pure and mixed Saccharomyces/non-Saccharomyces cultures during fermentation. Pure and mixed cultures of Saccharomyces cerevisiae BSc562, Hanseniaspora vinae BHv438 and Torulaspora delbrueckii BTd259 were assayed: 1% S. cerevisiae/99% H. vinae, 10% S. cerevisiae/90% H. vinae, 1% S. cerevisiae/99% T. delbrueckii and 10% S. cerevisiae/90% T. delbrueckii. Microvinifications were carried out with fresh must without pressing from Vitis vinifera L. c.v. Pedro Jiménez, an autochthonous variety from Argentina. Non-Saccharomyces species survived during 15-18days (BTd259) or until the end of the fermentation (BHv438) and influenced enzymatic profiles of mixed cultures. The results suggest that high concentrations of sugars did not affect enzymatic activity. β-Glucosidase and pectinase activities seemed to be adversely affected by an increase in ethanol: activity diminished with increasing fermentation time. Throughout the fermentation, Saccharomyces and non-Saccharomyces isolates assayed produced a broad range of enzymes of enological interest that catalyze hydrolysis of polymers present in grape juice. Vinifications carried out by a pure or mixed culture of BTd259 (99% of T. delbrueckii) showed the highest production of all enzymes assayed except for β-glucosidase. In mixed cultures, S. cerevisiae outgrew H. vinae, and T. delbrueckii was only detected until halfway the fermentation process. Nevertheless, their secreted enzymes could be detected throughout the fermentation process. Our results may contribute to a better understanding of the microbial interactions and the influence of some enzymes on vinification environments.  相似文献   

8.
The early death of two non-Saccharomyces wine strains (H. guilliermondii and H. uvarum) during mixed fermentations with S. cerevisiae was studied under enological growth conditions. Several microvinifications were performed in synthetic grape juice, either with single non-Saccharomyces or with mixed S. cerevisiae/non-Saccharomyces inocula. In all mixed cultures, non-Saccharomyces yeasts grew together with S. cerevisiae during the first 1-3 days (depending on the initial inoculum concentration) and then, suddenly, non-Saccharomyces cells began to die off, regardless of the ethanol concentrations present. Conversely, in both non-Saccharomyces single cultures the number of viable cells remained high (ranging 10(7)-10(8) CFU ml(-1)) even when cultures reached significant ethanol concentrations (up to 60-70 g l(-1)). Thus, at least for these yeast strains, it seems that ethanol is not the main death-inducing factor. Furthermore, mixed cultures performed with different S. cerevisiae/ H. guilliermondii inoculum ratios (3:1; 1:2; 1:10; 1:100) revealed that H. guilliermondii death increases for higher inoculum ratios. In order to investigate if the nature of the yeast-yeast interaction was related or not with a cell-cell contact-mediated mechanism, cell-free supernatants obtained from 3 and 6 day-old mixed cultures were inoculated with H. guilliermondii pure cultures. Under these conditions, cells still died and much higher death rates were found for the 6 days than for the 3 day-old supernatants. This strongly indicates that one or more toxic compounds produced by S. cerevisiae triggers the early death of the H. guilliermondii cells in mixed cultures with S. cerevisiae. Finally, although it has not been yet possible to identify the nature of the toxic compounds involved in this phenomenon we must emphasise that the S. cerevisiae strain used in the present work is killer sensitive with respect to the classical killer toxins, K1, K2 and K28, whereas the H. guilliermondii and H. uvarum strains are killer neutral.  相似文献   

9.
Occurrence and significance of Bacillus thuringiensis on wine grapes   总被引:1,自引:0,他引:1  
Wine grapes harvested at different stages during cultivation from several vineyards in New South Wales, Australia, harboured Bacillus thuringiensis at viable populations of 10(2)-10(6) cfu/g. Commercial preparations of B. thuringiensis had been sprayed onto the grapes as a biological insecticide. B. thuringiensis (10(1)-10(3) cfu/ml) was isolated from grape juice and fermenting grape juice in a commercial winery. Although B. thuringiensis remained viable when inoculated at 10(3)-10(4) cfu/ml into grape juice and wine (pH 3.0-6.0), it did not grow. Using in vitro agar culture assays, B. thuringiensis inhibited several grape-associated yeasts and bacteria as well as various species of fungi associated with grape spoilage and ochratoxin A production. B. thuringiensis did not inhibit Saccharomyces cerevisiae in agar culture or during alcoholic fermentation of grape juice. B. thuringiensis inhibited the malolactic bacterium, Oenococcus oeni, in agar culture but not during mixed cultures in a liquid medium.  相似文献   

10.
以25株本土非酿酒酵母菌为研究对象,采用酵母浸出粉胨葡萄糖(YPD)10培养基及Triple M改良模拟汁初筛,并进行耐受性(乙醇、SO2、糖及pH)测定及葡萄汁发酵,筛选能够有效增加葡萄酒酸度的优良本土非酿酒酵母菌。结果表明,非酿酒酵母菌株LT1及HU4产酸性能较好,具有较好的乙醇、SO2、糖和pH耐受性,其中菌株LT1能耐受乙醇体积分数12%、糖400 g/L及pH 2.75,菌株HU4能耐受乙醇体积分数6%vol、糖250 g/L及pH 2.75。菌株LT1和HU4在葡萄汁中启酵时间较短,发酵旺盛期CO2质量损失速率均>0.8 g/(L·h),乳酸产量分别为0.93 g/L、1.14 g/L,乙酸产量分别为0.38 g/L、0.42 g/L,具备酿造增酸葡萄酒的潜力。  相似文献   

11.
为探究发酵过程中本土非酿酒酵母菌株的发酵能力和糖苷酶活性,利用WL培养基、七叶苷培养基从宁夏贺兰山东麓产区自然发酵的葡萄汁中初步分选非酿酒酵母菌株;通过对硝基苯酚法测定β-D-葡萄糖苷酶、β-D-木糖苷酶、α-L-鼠李糖苷酶和α-L-阿拉伯糖苷酶活性,比较筛选高产糖苷酶菌株;并在模拟葡萄汁发酵过程中动态监测菌株的生长动力学和糖苷酶活性。结果表明:经26S rDNA的D1/D2区鉴定为Hanseniaspora opuntiae、Metschnikowia pulcherrima、3 株Hanseniaspora uvarum、Torulaspora delbrueckii共6 株非酿酒酵母菌株具有较高的糖苷酶活性,且不同菌株间表现出一定差异性。在发酵过程中,T. delbrueckii表现出较好的发酵能力和最大的糖苷酶累积活性(94.10~127.70 mU/mL),是对照菌株的1.96~2.30 倍;供试菌株M. pulcherrima具有较高的α-L-鼠李糖苷酶和α-L-阿拉伯糖苷酶活性;H. opuntiae和H. uvarum-3表现出高水平β-D-木糖苷酶和α-L-阿拉伯糖苷酶活性。本研究优选的本土非酿酒酵母具有较高的糖苷酶活性,具有葡萄酒增香酿造的应用潜力。  相似文献   

12.
Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations.  相似文献   

13.
A total of 350 colonies isolated from a cider cellar in Asturias (Spain) were identified by rDNA ITS-RFLP restriction analysis. Saccharomyces spp. strains were characterized by mitochondrial DNA (mtDNA) restriction analysis. Fifty-four different Saccharomyces spp. strains were identified and tested to ascertain their capacity to carry out secondary fermentation of sparkling ciders. The screening of yeasts to determine their principal enological characteristics (tolerance to ethanol, production of volatile acidity and hydrogen sulphide) was accomplished by means of rapid, non-expensive assays (plate agar). As a result, 13 (24%) of the 54 initial Saccharomyces spp. yeast strains were eliminated. The technological properties assessed were flocculation capacity, ethanol and sulphite tolerance, and production of major volatiles. Ten Saccharomyces cerevisiae strains were characterized as true flocculants; all of these strains were able to grow in ethanolic medium and in the presence of 200mg/l of sulphite. Applying cluster analysis to the production of amyl alcohols, isobutanol, propanol and 2-phenylethanol, the strains were classified in two natural groups. Two flocculent yeast strains referred to as 3' and 50', representative of the each statistical group, were selected together with two reference strains (Saccharomyces bayanus C6 and S. cerevisiae Levuline CHP) to elaborate four sparkling ciders by the Champenoise method. The analysis of variance (p<0.01) among ciders revealed that glycerol, acetaldehyde, ethyl acetate, methanol, propanol, i-butanol and 2-phenylethanol were significantly influenced by the secondary yeast strain. The results of sensory analysis indicated that all the sparkling ciders were scored as good. No significant differences among sparkling ciders were found for odour attributes and taste intensity.  相似文献   

14.
为获得适合刺梨果酒酿造的非酿酒酵母菌株,从刺梨自然发酵液中分离优质非酿酒酵母,通过形态学与26S rDNA序列分析来鉴定菌株;从葡萄糖耐受性、柠檬酸耐受性、酒精耐受性、二氧化硫耐受性、单宁耐受性、β-糖苷酶产生能力、硫化氢产生能力等方面分析菌株的生理特征;与酿酒酵母混合发酵刺梨果汁,从发酵刺梨果酒常规理化指标、感官品评以及香气物质方面探讨非酿酒酵母对刺梨果酒品质的影响。结果表明,利用赖氨酸筛选培养基从刺梨果实上筛选出80株非酿酒酵母,嗅闻法筛选出一株产香浓郁的菌株F13。形态学与分子生物学鉴定结果表明,F13为一株刺梨来源的葡萄汁有孢汉逊酵母;该菌株可耐受浓度为300 g/L葡萄糖、3%乙醇、3%柠檬酸、300 mg/L SO2以及25 g/L单宁处理。但酒精耐受性和β-糖苷酶产生能力不及酿酒酵母X16。此外,F13菌株不产硫化氢。F13与酿酒酵母混合发酵可降低刺梨果酒的酒精度和挥发酸,增加残糖量,分别为11.1%±0.39%、(0.67±0.03)g/L、(20.41±1.44)g/L。F13不影响刺梨果酒的感官品评,但可有效增加刺梨果酒中醇类物质的种类和含量,降低酯类物质种类和含量。本研究从刺梨自然发酵液中得到一株非酿酒酵母F13,对酿酒环境具有较优的耐受性(耐糖、酸、酒精度、二氧化硫),具有一定的工业化应用潜能。  相似文献   

15.
β-葡萄糖苷酶对糖苷键的水解作用已被广泛应用于酿酒、茶增香、保健品开发等领域.发酵环境中非酿酒酵母产生的β-葡萄糖苷酶活力高于酿酒酵母,可在酿酒酵母酶活力不足时进行补充.本文对发酵过程中不同的影响因素如酵母合成和释放β-葡萄糖苷酶的能力、发酵环境中的温度、酸碱度和可发酵糖浓度等对β-葡萄糖苷酶活力的影响进行了综述,并对...  相似文献   

16.
宁夏玉泉营地区酿酒葡萄酵母菌的分离筛选及分子鉴定   总被引:1,自引:0,他引:1  
为进一步探究宁夏玉泉营地区酿酒葡萄酵母菌的多样性,更好地开发利用本土葡萄酒产区酵母菌资源,从宁夏玉泉营地区的葡萄园土壤、葡萄果实表皮以及葡萄自然发酵过程中进行酵母菌的分离筛选,对得到的22株酵母菌株运用WL营养琼脂培养基进行初步聚类分类,并采用26S rDNA D1/D2区序列分析法进行菌株鉴定。结果表明,供试菌株共鉴定为6种,分别为大隐球酵母(Cryptococcus magnus)、美极梅奇酵母(Metschnikowia pulcherrima)、葡萄酒有孢汉生酵母(Hanseniaspora vineae)、酿酒酵母(Saccharomyces cerevisiae)、克鲁维毕赤酵母(Pichia kluyveri)、东方伊萨酵母(Issatchenkia orientalis)。  相似文献   

17.
The effect of yeasts on wine flavor response is of primary importance. The genus Saccharomyces, and mainly the species Saccharomyces cerevisiae, is responsible for alcoholic fermentation. Recently, several novel yeast isolates from wines have been described as hybrid yeasts between S. cerevisiae x S. kudriavzevii. We have analyzed their influence on two grape musts (Macabeo and Tempranillo) in fermentations conducted at four different temperatures (14, 18, 22 and 32 degrees C) by studying volatile compound production, sugar assimilation and other characteristics influencing the enological properties of wine caused by the impact of yeast. Hybrid yeasts behave particularly well at 14, 18 and 22 degrees C and the commercial strain of S. cerevisiae (T73) is better adapted at higher temperatures. Regarding the production of glycerol, acetic acid and malic acid, the hybrids display moderate behavior and concerning aromatic compound production, they are greater producers of higher alcohols. The behavior displayed by these hybrids in the fermentations studied in this work leads us to conclude that the use of hybrid strains can constitute an advantage in wine making.  相似文献   

18.
酿酒酵母产生的多种挥发性物质影响葡萄酒的香气风格,筛选本土酿酒酵母对改善葡萄酒同质化有积极作用.以13株不同来源的酿酒酵母和1株商业对照为试验菌株,对供试酵母的酒精耐受性、嗜杀性、产硫化氢能力及生长曲线进行了测定.随后在模拟汁中探究酵母的发酵特性,用固相微萃取-气相色谱/质谱(solid-phase microextr...  相似文献   

19.
The ability of different wine yeast ( Saccharomyces cerevisiae ) to inhibit malolactic bacteria ( Oenococcus oeni ) and the influence of nitrogen were studied using a synthetic grape juice. Malolactic fermentation was induced in fermenting synthetic grape juice or synthetic wines inoculated with different commercial strains of S. cerevisiae. O. oeni was generally inhibited in wines that contained higher concentrations of total SO2 although many yeast strains only inhibited the bacteria during fermentation under high nitrogen conditions. Yeast produced higher amounts of SO2 during fermentation under high nitrogen conditions suggesting that nitrogen affected the malolactic fermentation by influencing yeast SO2 production. However, the production of SO2 by yeast did not always account for the inhibition of O. oeni , suggesting the presence of other inhibitory mechanisms.  相似文献   

20.
非酿酒酵母(non-Saccharomyces cerevisiae)生长代谢可以为葡萄酒贡献更多风味物质,但发酵能力弱,耐受性差这一特点使其不能过多参与酒精发酵.针对这一问题,该研究采用常压室温等离子体(atmospheric room temperature plasma,ARTP)诱变技术对从葡萄皮表面筛选的马克...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号