首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White blood cells (WBCs) are a major component of immunity in response to pathogen invasion. Neutrophils are the most abundant WBCs in humans, playing a central role in acute inflammation induced by pathogens. Adhesion to vasculature and tissue infiltration of neutrophils are key processes in acute inflammation. Many inflammatory/autoimmune disorders and cancer therapies have been found to be involved in activation and tissue infiltration of neutrophils. A promising strategy to develop novel targeted drug delivery systems is the targeting and exploitation of activated neutrophils. Herein, a new drug delivery platform based on neutrophils is reviewed. There are two types of drug delivery systems: neutrophils as carriers and neutrophil‐membrane‐derived nanovesicles. It is discussed how nanoparticles hijack neutrophils in vivo to deliver therapeutics across blood vessel barriers and how neutrophil‐membrane‐derived nanovesicles target inflamed vasculature. Finally, the potential applications of neutrophil‐based drug delivery systems in treating inflammation and cancers are presented.  相似文献   

2.
Local tumor recurrence after surgical resection is a critical concern in cancer therapy, and the current treatments, such as postsurgical chemotherapy, still show undesired side effects. Here a nonimplant strategy (transformation induced localization, TIL) is presented to in situ construct long‐term retentive drug depots, wherein the sustained drug release from fibrous drug depots results in highly efficient suppression of postsurgical local tumor relapse. The peptide‐based prodrug nanoparticles show favorable tumor targeting and instantly reorganize into fibrous nanostructures under overexpressed enzyme, realizing the construction of long‐term drug depot in the tumor site. After the resection surgery, the remnant cancer cells are still inhibited by the sustained drug release from the fibrous prodrug depot, effectively preventing postsurgical local recurrences. This TIL strategy shows great potential in cancer recurrence therapy and offers a novel perspective for constructing functional biomaterials in vivo.  相似文献   

3.
4.
Inflammation is a common cause of many acute and chronic inflammatory diseases. A major limitation of existing anti‐inflammatory therapeutics is that they cannot simultaneously regulate pro‐inflammatory cytokine production, oxidative stress, and recruitment of neutrophils and macrophages. To overcome this limitation, nanoparticles (NPs) with multiple pharmacological activities are synthesized, using a chemically modified cyclic oligosaccharide. The manufacture of this type of bioactive, saccharide material‐based NPs (defined as LCD NP) is straightforward, cost‐effective, and scalable. Functionally, LCD NP effectively inhibits inflammatory response, oxidative stress, and cell migration for both neutrophils and macrophages, two major players of inflammation. Therapeutically, LCD NP shows desirable efficacies for the treatment of acute and chronic inflammatory diseases in mouse models of peritonitis, acute lung injury, and atherosclerosis. Mechanistically, the therapeutic benefits of LCD NP are achieved by inhibiting neutrophil‐mediated inflammatory macrophage recruitment and by preventing subsequent pro‐inflammatory events. In addition, LCD NP shows good safety profile in a mouse model. Thus, LCD NP can serve as an effective anti‐inflammatory nanotherapy for the treatment of inflammatory diseases mainly associated with neutrophil and macrophage infiltration.  相似文献   

5.
To achieve an excellent delivery effect of drug, stimuli‐responsive nano “gate” with physical blockage units is usually constructed on the surface of the mesoporous silica nanocarriers (MSNs). In nature, the aquaporins in cell membrane can control the transport of water molecules by regulating the channel wettability, which is resulted from the conformational change of amino acids in the channel. Inspired by this phonomenon, herein a new concept of free‐blockage controlled release system is proposed, which is achieved by controlling the wettability of the internal surface of nanopores on MSNs. Such a new system is different from the physical‐blockage controlled release system, which bypasses the use of nano “gate” and overcomes the limitations of traditional physical blockage system. Moreover, further studies have shown that the system can selectively release the entrapped doxorubicin in human breast adenocarcinoma (MCF‐7) cells triggered by intracellular reactive oxygen species (ROS) but not in normalhuman umbilical vein endothelial cells (HUVECs) containing ROS with low levels. The wettability‐determined free‐blockage controlled release system is simple and effective, and it can also be triggered by intracellular biological stimuli, which provides a new approach for the future practical application of drug delivery and cancer therapy.  相似文献   

6.
The mononuclear phagocyte system (MPS, e.g., liver, spleen) is often treated as a “blackbox” by nanoresearchers in translating nanomedicines. Often, most of the injected nanomaterials are sequestered by the MPS, preventing their delivery to the desired disease areas. Here, this imperfection is exploited by applying nano‐antioxidants with preferential liver uptake to directly prevent hepatic ischemia‐reperfusion injury (IRI), which is a reactive oxygen species (ROS)‐related disease. Ceria nanoparticles (NPs) are selected as a representative nano‐antioxidant and the detailed mechanism of preventing IRI is investigated. It is found that ceria NPs effectively alleviate the clinical symptoms of hepatic IRI by scavenging ROS, inhibiting activation of Kupffer cells and monocyte/macrophage cells. The released pro‐inflammatory cytokines are then significantly reduced and the recruitment and infiltration of neutrophils are minimized, which suppress subsequent inflammatory reaction involved in the liver. The protective effect of nano‐antioxidants against hepatic IRI in living animals and the revealed mechanism herein suggests their future use for the treatment of hepatic IRI in the clinic.  相似文献   

7.
8.
Insufficient drug release as well as poor drug penetration are major obstacles for effective nanoparticles (NPs)‐based cancer therapy. Herein, the high aqueous instability of amorphous calcium carbonate (ACC) is employed to construct doxorubicin (DOX) preloaded and monostearin (MS) coated “Pandora's box” (MS/ACC–DOX) NPs for lipase‐triggered water‐responsive drug release in lipase‐overexpressed tumor tissue to induce a neighboring effect and enhance drug penetration. MS as a solid lipid can prevent potential drug leakage of ACC–DOX NPs during the circulatory process, while it can be readily be disintegrated in lipase‐overexpressed SKOV3 cells to expose the ACC–DOX core. The high aqueous instability of ACC will lead to burst release of the encapsulated DOX to induce apoptosis and cytotoxicity to kill the tumor cells. The liberated NPs from the dead or dying cells continue to respond to the ubiquitous aqueous environment to sufficiently release DOX once unpacked, like the “Pandora's box”, leading to severe cytotoxicity to neighboring cells (neighboring effect). Moreover, the continuously released free DOX molecules can readily diffused through the tumor extracellular matrix to enhance drug penetration to deep tumor tissue. Both effects contribute to achieve elevated antitumor benefits.  相似文献   

9.
Nitric oxide (NO) is a crucial signaling molecule with various functions in physiological systems. Due to its potent biological effect, the preparation of responsive biomaterials upon NO having temporally transient properties is a challenging task. This study represents the first therapeutic‐gas (i.e., NO)‐responsive hydrogel by incorporating a NO‐cleavable crosslinker. The hydrogel is rapidly swollen in response to NO, and not to other gases. Furthermore, the NO‐responsive gel is converted to enzyme‐responsive gels by cascade reactions from an enzyme to NO production for which the NO precursor is a substrate of the enzyme. The application of the hydrogel as a NO‐responsive drug‐delivery system is proved here by revealing effective protein drug release by NO infusion, and the hydrogel is also shown to be swollen by the NO secreted from the cultured cells. The NO‐responsive hydrogel may prove useful in many applications, for example drug‐delivery vehicles, inflammation modulators, and as a tissue scaffold.  相似文献   

10.
Extracellular vesicles secreted from adipose‐derived mesenchymal stem cells (ADSCs) have therapeutic effects in inflammatory diseases. However, production of extracellular vesicles (EVs) from ADSCs is costly, inefficient, and time consuming. The anti‐inflammatory properties of adipose tissue‐derived EVs and other biogenic nanoparticles have not been explored. In this study, biogenic nanoparticles are obtained directly from lipoaspirate, an easily accessible and abundant source of biological material. Compared to ADSC‐EVs, lipoaspirate nanoparticles (Lipo‐NPs) take less time to process (hours compared to months) and cost less to produce (clinical‐grade cell culture facilities are not required). The physicochemical characteristics and anti‐inflammatory properties of Lipo‐NPs are evaluated and compared to those of patient‐matched ADSC‐EVs. Moreover, guanabenz loading in Lipo‐NPs is evaluated for enhanced anti‐inflammatory effects. Apolipoprotein E and glycerolipids are enriched in Lipo‐NPs compared to ADSC‐EVs. Additionally, the uptake of Lipo‐NPs in hepatocytes and macrophages is higher. Lipo‐NPs and ADSC‐EVs have comparable protective and anti‐inflammatory effects. Specifically, Lipo‐NPs reduce toll‐like receptor 4‐induced secretion of inflammatory cytokines in macrophages. Guanabenz‐loaded Lipo‐NPs further suppress inflammatory pathways, suggesting that this combination therapy can have promising applications for inflammatory diseases.  相似文献   

11.
Microcapsules with molecule‐selective permeation are appealing as microreactors, capsule‐type sensors, drug and cell carriers, and artificial cells. To accomplish molecular size‐ and charge‐selective permeation, regular size of pores and surface charges have been formed in the membranes. However, it remains an important challenge to provide advanced regulation of transmembrane transport. Here, smart microcapsules are designed that provide molecular polarity‐ and temperature‐dependent permeability. With capillary microfluidic devices, water‐in‐oil‐in‐water (W/O/W) double‐emulsion drops are prepared, which serve as templates to produce microcapsules. The oil shell is composed of two monomers and dodecanol, which turns to a polymeric framework whose continuous voids are filled with dodecanol upon photopolymerization. One of the monomers provides mechanical stability of the framework, whereas the other serves as a compatibilizer between growing polymer and dodecanol, preventing macrophase separation. Above melting point of dodecanol, molecules that are soluble in the molten dodecanol are selectively allowed to diffuse across the shell, where the rate of transmembrane transport is strongly influenced by partition coefficient. The rate is drastically lowered for temperatures below the melting point. This molecular polarity‐ and temperature‐dependent permeability renders the microcapsules potentially useful as drug carriers for triggered release and contamination‐free microreactors and microsensors.  相似文献   

12.
Depression is a common psychiatric disorder in patients with advanced chronic kidney diseases (CKDs). Strong correlation has been reported between depression and patients' morbidity and mortality among dialysis patients. On the contrary, chronic inflammation may be a major contributor to morbidity and mortality in these patients. Elevated plasma levels of proinflammatory cytokines, especially C‐reactive protein and interleukin (IL)‐6, have been correlated with cardiovascular events, hospitalization, and all‐cause and cardiovascular‐associated mortality in dialysis patients. Studies suggested that inflammation‐mediated atherosclerotic cardiovascular diseases are the possible reasons for depression‐induced mortality among patients without renal diseases. Several studies found significant elevations in circulating levels of proinflammatory cytokines, particularly IL‐6 and tumor necrosis factor‐α, in patients with major depression. Furthermore, depressive mood and behaviors, including sadness and suicidal ideation, were observed in patients who received repeated injections of recombinant cytokines. A thorough literature review indicates that while depressive symptoms and elevated inflammatory cytokine levels coexist in CKD and dialysis patients, their association is uncertain. Depression seems to be more associated with elevated serum levels of IL‐6 than other cytokines in these patients. Further studies are needed to clarify the possibility of a causal relationship between inflammation and depressive symptoms in CKD and dialysis patients.  相似文献   

13.
Metastatic breast cancer may be resistant to chemo‐immunotherapy due to the existence of cancer stem cells (CSC). Also, the control of particle size and drug release of a drug carrier for multidrug combination is a key issue influencing the therapy effect. Here, a cocktail strategy is reported, in which chemotherapy against both bulk tumor cells and CSC and immune checkpoint blockade therapy are intergraded into one drug delivery system. The chemotherapeutic agent paclitaxel (PTX), the anti‐CSC agent thioridazine (THZ), and the PD‐1/PD‐L1 inhibitor HY19991 (HY) are all incorporated into an enzyme/pH dual‐sensitive nanoparticle with a micelle–liposome double‐layer structure. The particle size shrinks when the nanoparticle transfers from circulation to tumor tissues, favoring both pharmacokinetics and cellular uptake, meanwhile achieving sequential drug release where needed. This nano device, named PM@THL, increases the intratumoral drug concentrations in mice and exhibits significant anticancer efficacy, with tumor inhibiting rate of 93.45% and lung metastasis suppression rate of 97.64%. It also reduces the proportion of CSC and enhances the T cells infiltration in tumor tissues, and thus prolongs the survival of mice. The cocktail therapy based on the spatio‐temporally controlled nano device will be a promising strategy for treating breast cancer.  相似文献   

14.
Inflammation, oxidative stress, and high concentration of serum lipoprotein (a) [Lp (a)] are common complications in hemodialysis patients. The present study was designed to investigate the effects of l ‐carnitine supplement on serum inflammatory cytokines, C‐reactive protein (CRP), Lp (a), and oxidative stress in hemodialysis patients with Lp (a) hyperlipoproteinemia [hyper Lp (a)]. This was an unblinded, randomized clinical trial. Thirty‐six hyper Lp (a) hemodialysis patients (23 men and 13 women) were randomly assigned to either a carnitine or control group. Patients in the carnitine group received 1000 mg/d oral l ‐carnitine for 12 weeks, whereas patients in the control group did not receive any l ‐carnitine supplement. At baseline and the end of week 12, 5 mL of blood were collected after a 12‐ to 14‐hours fast and serum free carnitine, CRP, interleukin‐1β, interleukin‐6 (IL‐6), tumor necrosis factor‐α, Lp (a), and oxidized low‐density lipoprotein were measured. Serum free carnitine concentration increased significantly by 86% in the carnitine group at the end of week 12 compared with baseline (P<0.001), while serum CRP and IL‐6 showed a significant decrease of 29% (P<0.05) and 61% (P<0.001), respectively. No significant changes were observed in serum free carnitine, CRP, and IL‐6 in the control group. There were no significant differences between the two groups in mean changes of serum interleukin‐1β, tumor necrosis factor‐α, Lp (a), and oxidized low‐density lipoprotein concentrations. l ‐carnitine supplement reduces inflammation in hemodialysis patients, but has no effect on hyper Lp (a) and oxidative stress.  相似文献   

15.
The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering‐gallery mode biosensors, with precise microfluidics control to achieve label‐free and real‐time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform.  相似文献   

16.
The sustained or controlled release of nitric oxide (NO) can be the most promising approach for the suppression or prevention of restenosis and thrombosis caused by stent implantation. The aim of this study is to investigate the feasibility in the potential use of layer‐by‐layer (LBL) coating with a NO donor‐containing liposomes to control the release rate of NO from a metallic stent. Microscopic observation and surface characterizations of LBL‐modified stents demonstrate successful LBL coating with liposomes on a stent. Release profiles of NO show that the release rate is sustained up to 5 d. In vitro cell study demonstrates that NO release significantly enhances endothelial cell proliferation, whereas it markedly inhibits smooth muscle cell proliferation. Finally, in vivo study conducted with a porcine coronary injury model proves the therapeutic efficacy of the NO‐releasing stents coated by liposomal LBL technique, supported by improved results in luminal healing, inflammation, and neointimal thickening except thrombo‐resistant effect. As a result, all these results demonstrate that highly optimized release rate and therapeutic dose of NO can be achieved by LBL coating and liposomal encapsulation, followed by significantly efficacious outcome in vivo.  相似文献   

17.
Targeted delivery of the chemotherapeutic agent methotrexate (MTX) to cancer cells using poly(ethyleneimine)‐functionalized mesoporous silica particles as drug‐delivery vectors is reported. Due to its high affinity for folate receptors, the expression of which is elevated in cancer cells, MTX serves as both a targeting ligand and a cytotoxic agent. Enhanced cancer‐cell apoptosis (programmed cell death) relative to free MTX is thus observed at particle concentrations where nonspecific MTX‐induced apoptosis is not observed in the nontargeted healthy cell line, while corresponding amounts of free drug affect both cell lines equally. The particles remain compartmentalized in endo‐/lysosomes during the time of observation (up to 72 h), while the drug is released from the particle only upon cell entry, thereby inducing selective apoptosis in the target cells. As MTX is mainly attached to the particle surface, an additional advantage is that the presented carrier design allows for adsorption (loading) of additional drugs into the pore network for therapies based on a combination of drugs.  相似文献   

18.
Currently, mesenchymal stem cells (MSCs)‐based therapies for bone regeneration and treatments have gained significant attention in clinical research. Though many chemical and physical cues which influence the osteogenic differentiation of MSCs have been explored, scaffolds combining the benefits of Zn2+ ions and unique nanostructures may become an ideal interface to enhance osteogenic and anti‐infective capabilities simultaneously. In this work, motivated by the enormous advantages of Zn‐based metal–organic framework‐derived nanocarbons, C‐ZnO nanocarbons‐modified fibrous scaffolds for stem cell‐based osteogenic differentiation are constructed. The modified scaffolds show enhanced expression of alkaline phosphatase, bone sialoprotein, vinculin, and a larger cell spreading area. Meanwhile, the caging of ZnO nanoparticles can allow the slow release of Zn2+ ions, which not only activate various signaling pathways to guide osteogenic differentiation but also prevent the potential bacterial infection of implantable scaffolds. Overall, this study may provide new insight for designing stem cell‐based nanostructured fibrous scaffolds with simultaneously enhanced osteogenic and anti‐infective capabilities.  相似文献   

19.
The targeted and sustained drug release from stimuli‐responsive nanodelivery systems is limited by the irreversible and uncontrolled disruption of the currently used nanostructures. Bionic nanocapsules are designed by cross‐linking polythymine and photoisomerized polyazobenzene (PETAzo) with adenine‐modified ZnS (ZnS‐A) nanoparticles (NPs) via nucleobase pairing. The ZnS‐A NPs convert X‐rays into UV radiation that isomerizes the azobenzene groups, which allows controlled diffusion of the active payloads across the bilayer membranes. In addition, the nucleobase pairing interactions between PETAzo and ZnS‐A prevent drug leakage during their in vivo circulation, which not only enhances tumor accumulation but also maintains stability. These nanocapsules with tunable permeability show prolonged retention, remotely controlled drug release, enhanced targeted accumulation, and effective antitumor effects, indicating their potential as an anticancer drug delivery system.  相似文献   

20.
We introduce a material model for the simulation of polycrystalline materials undergoing solid‐to‐solid phase‐transformations. As a basis, we present a scalar‐valued phase‐transformation model where a Helmholtz free energy function depending on volumetric and deviatoric strain measures is assigned to each phase. The analysis of the related overall Gibbs energy density allows for the calculation of energy barriers. With these quantities at hand, we use a statistical‐physics‐based approach to determine the resulting evolution of volume fractions. Though the model facilitates to take into account an arbitrary number of solid phases of the underlying material, we restrict this work to the simulation of phase‐transformations between an austenitic parent phase and a martensitic tension and compression phase. The scalar model is embedded into a computational micro‐sphere formulation in view of the simulation of three‐dimensional boundary value problems. The final modelling approach necessary for macroscopic simulations is accomplished by a finite element formulation, where the local material behaviour at each integration point is governed by the response of the micro‐sphere model.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号