首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了满足制造工艺和静强度要求,提出一种综合考虑最小尺寸控制和应力约束的柔顺机构混合约束拓扑优化设计方法。采用改进的固体各向同性材料插值模型描述材料分布,利用多相映射方法同时控制实相和空相材料结构的最小尺寸,采用最大近似函数P范数求解机构的最大应力,以机构的输出位移最大化作为目标函数,综合考虑最小特征尺寸控制和应力约束建立柔顺机构混合约束拓扑优化数学模型,利用移动渐近算法求解柔顺机构混合约束拓扑优化问题。数值算例结果表明,混合约束拓扑优化获得的柔顺机构能够同时满足最小尺寸制造约束和静强度要求,机构的von Mises等效应力分布更加均匀。  相似文献   

2.
为了满足制造工艺和静强度要求,提出一种综合考虑最小尺寸控制和应力约束的柔顺机构混合约束拓扑优化设计方法。采用改进的固体各向同性材料插值模型描述材料分布,利用多相映射方法同时控制实相和空相材料结构的最小尺寸,采用最大近似函数P范数求解机构的最大应力,以机构的输出位移最大化作为目标函数,综合考虑最小特征尺寸控制和应力约束建立柔顺机构混合约束拓扑优化数学模型,利用移动渐近算法求解柔顺机构混合约束拓扑优化问题。数值算例结果表明,混合约束拓扑优化获得的柔顺机构能够同时满足最小尺寸制造约束和静强度要求,机构的von Mises等效应力分布更加均匀。  相似文献   

3.
This paper describes the use of topology optimization as a synthesis tool for the design of large‐displacement compliant mechanisms. An objective function for the synthesis of large‐displacement mechanisms is proposed together with a formulation for synthesis of path‐generating compliant mechanisms. The responses of the compliant mechanisms are modelled using a total Lagrangian finite element formulation, the sensitivity analysis is performed using the adjoint method and the optimization problem is solved using the method of moving asymptotes. Procedures to circumvent some numerical problems are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
This paper proposes a topology optimization method for the design of compliant circular path mechanisms, or compliant mechanisms having a set of output displacement vectors with a constant norm, which is induced by a given set of input forces. To perform the optimization, a simple linear system composed of an input force vector, an output displacement vector and a matrix connecting them is constructed in the context of a discretized linear elasticity problem using FEM. By adding two constraints: 1, the dimensions of the input and the output vectors are equal; 2, the Euclidean norms of all local input force vectors are constant; from the singular value decomposition of the matrix connecting the input force vector and the output displacement vector, the optimization problem, which specifies and equalizes the norms of all output vectors, is formulated. It is a minimization problem of the weighted summation of the condition number of the matrix and the least square error of the second singular value and the specified value. This methodology is implemented as a topology optimization problem using the solid isotropic material with penalization method, sensitivity analysis and method of moving asymptotes. The numerical examples illustrate mechanically reasonable compliant circular path mechanisms and other mechanisms having multiple outputs with a constant norm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A new level set method for topology optimization of distributed compliant mechanism is presented in this study. By taking two types of mean compliance into consideration, several new objective functions are developed and built in the conventional level set method to avoid generating the de facto hinges in the created mechanisms. Aimed at eliminating the costly reinitialization procedure during the evolution of the level set function, an accelerated level set evolution algorithm is developed by adding an extra energy function, which can force the level set function to close to a signed distance function during the evolution. Two widely studied numerical examples in topology optimization of compliant mechanisms are studied to demonstrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
朱志强  熊艳红 《包装工程》2019,40(5):202-208
目的运用拓扑优化技术设计一种平面2-DOF(Degrees-of-Freedom)柔顺并联机构,使其具有微米级别的微运动特性。方法依据平面2-DOF并联原型机构的受力情况进行运动特性分析,基于同构封闭矢量映射原理构建平面2-DOF柔顺并联机构的微分运动Jacobian矩阵,表达多自由度的柔顺并联机构从输入到输出间各关节的运动关系。定义柔度为优化目标函数,微分运动Jacobian矩阵为运动条件,材料体积分数为约束条件,构建平面2-DOF柔顺并联机构材料属性的有理近似模型,并运用移动渐进线法优化求解。结果优化后的平面2-DOF柔顺并联机构构型在x方向的位移为-0.0089mm,在y方向的位移为0.0053 mm,同时,其沿x方向和y方向的微位移理论值为-0.0031 mm和0.0067 mm。结论与并联原型机构的运动特性相比,平面2-DOF柔顺并联机构优化后的微运动特性具有一致性,均为微米级。  相似文献   

7.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A parameterization level set method is presented for structural shape and topology optimization of compliant mechanisms involving large displacements. A level set model is established mathematically as the Hamilton–Jacobi equation to capture the motion of the free boundary of a continuum structure. The structural design boundary is thus described implicitly as the zero level set of a level set scalar function of higher dimension. The radial basis function with compact support is then applied to interpolate the level set function, leading to a relaxation and separation of the temporal and spatial discretizations related to the original partial differential equation. In doing so, the more difficult shape and topology optimization problem is now fully parameterized into a relatively easier size optimization of generalized expansion coefficients. As a result, the optimization is changed into a numerical process of implementing a series of motions of the implicit level set function via an existing efficient convex programming method. With the concept of the shape derivative, the geometrical non‐linearity is included in the rigorous design sensitivity analysis to appropriately capture the large displacements of compliant mechanisms. Several numerical benchmark examples illustrate the effectiveness of the present level set method, in particular, its capability of generating new holes inside the material domain. The proposed method not only retains the favorable features of the implicit free boundary representation but also overcomes several unfavorable numerical considerations relevant to the explicit scheme, the reinitialization procedure, and the velocity extension algorithm in the conventional level set method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, compliant mechanism design with non-linear materials using topology optimization is presented. A general displacement functional with non-linear material model is used in the topology optimization formulation. Sensitivity analysis of this displacement functional is derived from the adjoint method. Optimal compliant mechanism examples for maximizing the mechanical advantage are presented and the effect of non-linear material on the optimal design are considered.  相似文献   

10.
This paper presents a level‐set‐based topology optimization method based on numerically consistent sensitivity analysis. The proposed method uses a direct steepest‐descent update of the design variables in a level‐set method; the level‐set nodal values. An exact Heaviside formulation is used to relate the level‐set function to element densities. The level‐set function is not required to be a signed‐distance function, and reinitialization is not necessary. Using this approach, level‐set‐based topology optimization problems can be solved consistently and multiple constraints treated simultaneously. The proposed method leads to more insight in the nature of level‐set‐based topology optimization problems. The level‐set‐based design parametrization can describe gray areas and numerical hinges. Consistency causes results to contain these numerical artifacts. We demonstrate that alternative parameterizations, level‐set‐based or density‐based regularization can be used to avoid artifacts in the final results. The effectiveness of the proposed method is demonstrated using several benchmark problems. The capability to treat multiple constraints shows the potential of the method. Furthermore, due to the consistency, the optimizer can run into local minima; a fundamental difficulty of level‐set‐based topology optimization. More advanced optimization strategies and more efficient optimizers may increase the performance in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In multimaterial topology optimization of minimizing a global measure of stress, the maximum stresses in different materials may not satisfy the strength design requirements simultaneously if stress constraints for different materials are not considered. In this paper, a level set–based method is presented to handle the stress-constrained multimaterial topology optimization of minimizing a global stress measure. Specifically, a multimaterial level set model is adopted to describe the structural topology, and a stress interpolation scheme is introduced for stress evaluation. Then, a stress penalty-based topology optimization model is presented. Meanwhile, an adaptive adjusting scheme of the stress penalty factor is employed to improve the control of the local stress level. To solve the stress-constrained multimaterial topology optimization problem minimizing the global measure of stress, the parametric level set method is employed, and the sensitivity analysis is carried out. Numerical examples are provided to demonstrate the effectiveness of the presented method. Results indicate that multimaterial structures with optimized global stress can be gained, and stress constraints for different materials can be satisfied simultaneously.  相似文献   

12.
In this paper, we propose an approach for reliability‐based design optimization where a structure of minimum weight subject to reliability constraints on the effective stresses is sought. The reliability‐based topology optimization problem is formulated by using the performance measure approach, and the sequential optimization and reliability assessment method is employed. This strategy allows for decoupling the reliability‐based topology optimization problem into 2 steps, namely, deterministic topology optimization and reliability analysis. In particular, the deterministic structural optimization problem subject to stress constraints is addressed with an efficient methodology based on the topological derivative concept together with a level‐set domain representation method. The resulting algorithm is applied to some benchmark problems, showing the effectiveness of the proposed approach.  相似文献   

13.
A multi‐material topology optimization scheme is presented. The formulation includes an arbitrary number of phases with different mechanical properties. To ensure that the sum of the volume fractions is unity and in order to avoid negative phase fractions, an obstacle potential function, which introduces infinity penalty for negative densities, is utilized. The problem is formulated for nonlinear deformations, and the objective of the optimization is the end displacement. The boundary value problems associated with the optimization problem and the equilibrium equation are solved using the finite element method. To illustrate the possibilities of the method, it is applied to a simple boundary value problem where optimal designs using multiple phases are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
15.
In multi‐objective optimization, a design is defined to beit pareto‐optimal if no other design exists that is better with respect to one objective, and as good with respect to other objectives. In this paper, we first show that if a topology is pareto‐optimal, then it must satisfy certain properties associated with the topological sensitivity field, i.e. no further comparison is necessary. This, in turn, leads to a deterministic, i.e. non‐stochastic, method for efficiently generating pareto‐optimal topologies using the classic fixed‐point iteration scheme. The proposed method is illustrated, and compared against SIMP‐based methods, through numerical examples. In this paper, the proposed method of generating pareto‐optimal topologies is limited to bi‐objective optimization, namely compliance–volume and compliance–compliance. The future work will focus on extending the method to non‐compliance and higher dimensional pareto optimization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The inclusion of non‐linear elastic analyses into the topology optimization problem is necessary to capture the finite deformation response, e.g. the geometric non‐linear response of compliant mechanisms. In previous work, the non‐linear response is computed by standard non‐linear elastic finite element analysis. Here, we incorporate a load–displacement constraint method to traverse non‐linear equilibrium paths with limit points to design structures that exhibit snap‐through behaviour. To accomplish this, we modify the basic arc length algorithm and embed this analysis into the topology optimization problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A bidirectional evolutionary structural optimization algorithm is presented, which employs integer linear programming to compute optimal solutions to topology optimization problems with the objective of mass minimization. The objective and constraint functions are linearized using Taylor's first-order approximation, thereby allowing the method to handle all types of constraints without using Lagrange multipliers or sensitivity thresholds. A relaxation of the constraint targets is performed such that only small changes in topology are allowed during a single update, thus ensuring the existence of feasible solutions. A variety of problems are solved, demonstrating the ability of the method to easily handle a number of structural constraints, including compliance, stress, buckling, frequency, and displacement. This is followed by an example with multiple structural constraints and, finally, the method is demonstrated on a wing-box, showing that topology optimization for mass minimization of real-world structures can be considered using the proposed methodology.  相似文献   

18.
A bi-directional evolutionary level set method for solving topology optimization problems is presented in this article. The proposed method has three main advantages over the standard level set method. First, new holes can be automatically generated in the design domain during the optimization process. Second, the dependency of the obtained optimized configurations upon the initial configurations is eliminated. Optimized configurations can be obtained even being started from a minimum possible initial guess. Third, the method can be easily implemented and is computationally more efficient. The validity of the proposed method is tested on the mean compliance minimization problem and the compliant mechanisms topology optimization problem.  相似文献   

19.
A new isogeometric density‐based approach for the topology optimization of multi‐material structures is presented. In this method, the density fields of multiple material phases are represented using the isogeometric non‐uniform rational B‐spline‐based parameterization leading to exact modeling of the geometry, removing numerical artifacts and full analytical computation of sensitivities in a cost‐effective manner. An extension of the perimeter control technique is introduced where restrictions are imposed on the perimeters of density fields of all phases. Consequently, not only can one control the complexity of the optimal design but also the minimal lengths scales of all material phases. This leads to optimal designs with significantly enhanced manufacturability and comparable performance. Unlike the common element‐wise or nodal‐based density representations, owing to higher order continuity of density fields in this method, their gradients required for perimeter control restrictions are calculated exactly without additional computational cost. The problem is formulated with constraints on either (1) volume fractions of different material phases or (2) the total mass of the structure. The proposed method is applied for the minimal compliance design of two‐dimensional structures consisting of multiple distinct materials as well as functionally graded ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号