首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen inhibition remains a challenge in photo‐curing technology despite the expenditure of considerable effort in developing a convenient, efficient, and low‐cost prevention method. Here, a novel strategy to prevent oxygen inhibition is presented; it is based on the self‐assembly of multifunctional nano‐photo‐initiators (F2‐POSS‐(SH)4‐TX/EDB) at the interface of air and the liquid monomer. These nano‐photo‐initiators consist of a thiol‐containing polyhedral oligomeric silsesquioxane (POSS) skeleton onto which fluorocarbon chains and thioxanthone and dimethylaminobenzoate (TX/EDB) photo‐initiator moieties are grafted. Real‐time Fourier‐transform infrared spectroscopy (FT‐IR) is used to investigate the photo‐polymerization of various acrylate monomers that are initiated by F2‐POSS‐(SH)4‐TX/EDB and its model analogues in air and in N2. FT‐IR results show that F2‐POSS‐(SH)4‐TX/EDB decreases the effects of oxygen inhibition. X‐ray photo‐electron spectroscopy and atomic force microscopy reveal that the self‐assembly of F2‐POSS‐(SH)4‐TX/EDB at the air/(liquid monomer) interface forms a cross‐linked top layer via thiol–ene polymerization; this layer acts as a physical barrier against the diffusion of oxygen from the surface into the bulk layer. A mismatch in the shrinkage between the top and bulk layers arise as a result of the different types of photo‐cross‐linking reactions. Subsequently, the surface develops a wrinkled pattern with a low surface energy. This strategy exhibits considerable potential for preventing oxygen inhibition, and the wrinkled pattern may prove very useful in photo‐curing technology.  相似文献   

2.
Cost‐effective synthesis of carbon nanospheres with a desirable mesoporous network for diversified energy storage applications remains a challenge. Herein, a direct templating strategy is developed to fabricate monodispersed N‐doped mesoporous carbon nanospheres (NMCSs) with an average particle size of 100 nm, a pore diameter of 4 nm, and a specific area of 1093 m2 g?1. Hexadecyl trimethyl ammonium bromide and tetraethyl orthosilicate not only play key roles in the evolution of mesopores but also guide the assembly of phenolic resins to generate carbon nanospheres. Benefiting from the high surface area and optimum mesopore structure, NMCSs deliver a large specific capacitance up to 433 F g?1 in 1 m H2SO4. The NMCS electrodes–based symmetric sandwich supercapacitor has an output voltage of 1.4 V in polyvinyl alcohol/H2SO4 gel electrolyte and delivers an energy density of 10.9 Wh kg?1 at a power density of 14014.5 W kg?1. Notably, NMCSs can be directly applied through the mask‐assisted casting technique by a doctor blade to fabricate micro‐supercapacitors. The micro‐supercapacitors exhibit excellent mechanical flexibility, long‐term stability, and reliable power output.  相似文献   

3.
The wetting and drying of drops on flexible fibers occurs ubiquitously in nature, and the capillary force underlying this phenomenon has motivated our great interest in learning how to direct supramolecular self‐assembly. Here, the hierarchical co‐assembly of two aromatic peptides, diphenylalanine (FF) and ferrocene‐diphenylalanine (Fc‐FF), is reported via sequential, combinatorial assembly. The resulting dandelion‐like microstructures have highly complex architectures, where FF microtube arrays serve as the scapes and the Fc‐FF nanofibers serve as the flower heads. Homogeneous FF microtubes with diameters tailored between 1 and 9 μm and wall thickness ranging from 70 to 950 nm are initially formed by controlling the degree of supersaturation of the FF and the water content. Once the FF microtubes are formed, the growth of the dandelion‐like microstructures is then driven by the capillary force, derived from the wetting and drying of the Fc‐FF solution on the FF microtubes. This simple and ingenious strategy offers many opportunities to develop new and creative methods for controlling the hierarchical self‐assembly of peptides and thus building highly complex nano and microstructures.  相似文献   

4.
Rechargeable aluminum‐ion batteries (AIBs) are considered as a new generation of large‐scale energy‐storage devices due to their attractive features of abundant aluminum source, high specific capacity, and high energy density. However, AIBs suffer from a lack of suitable cathode materials with desirable capacity and long‐term stability, which severely restricts the practical application of AIBs. Herein, a binder‐free and self‐standing cobalt sulfide encapsulated in carbon nanotubes is reported as a novel cathode material for AIBs. The resultant new electrode material exhibits not only high discharge capacity (315 mA h g−1 at 100 mA g−1) and enhanced rate performance (154 mA h g−1 at 1 A g−1), but also extraordinary cycling stability (maintains 87 mA h g−1 after 6000 cycles at 1 A g−1). The free‐standing feature of the electrode also effectively suppresses the side reactions and material disintegrations in AIBs. The new findings reported here highlight the possibility for designing high‐performance cathode materials for scalable and flexible AIBs.  相似文献   

5.
Self‐assembly of colloidal microspheres or nanospheres is an effective strategy for fabrication of ordered nanostructures. By combination of colloidal self‐assembly with nanofabrication techniques, two‐dimensional (2D) colloidal crystals have been employed as masks or templates for evaporation, deposition, etching, and imprinting, etc. These methods are defined as “colloidal lithography”, which is now recognized as a facile, inexpensive, and repeatable nanofabrication technique. This paper presents an overview of 2D colloidal crystals and nanostructure arrays fabricated by colloidal lithography. First, different methods for fabricating self‐assembled 2D colloidal crystals and complex 2D colloidal crystal structures are summarized. After that, according to the nanofabrication strategy employed in colloidal lithography, related works are reviewed as colloidal‐crystal‐assisted evaporation, deposition, etching, imprinting, and dewetting, respectively.  相似文献   

6.
Self‐assembly is a fundamental concept and a powerful approach in molecular science. However, creating functional materials with the desired properties through self‐assembly remains challenging. In this work, through a combination of experimental and computational approaches, the self‐assembly of small amphiphilic dendrons into nanosized supramolecular dendrimer micelles with a degree of structural definition similar to traditional covalent high‐generation dendrimers is reported. It is demonstrated that, with the optimal balance of hydrophobicity and hydrophilicity, one of the self‐assembled nanomicellar systems, totally devoid of toxic side effects, is able to deliver small interfering RNA and achieve effective gene silencing both in cells – including the highly refractory human hematopoietic CD34+ stem cells – and in vivo, thus paving the way for future biomedical implementation. This work presents a case study of the concept of generating functional supramolecular dendrimers via self‐assembly. The ability of carefully designed and gauged building blocks to assemble into supramolecular structures opens new perspectives on the design of self‐assembling nanosystems for complex and functional applications.  相似文献   

7.
With graphene‐like topology and designable functional moieties, single‐layered covalent organic frameworks (sCOFs) have attracted enormous interest for both fundamental research and application prospects. As the growth of sCOFs involves the assembly and reaction of precursors in a spatial defined manner, it is of great importance to understand the kinetics of sCOFs formation. Although several large families of sCOFs and bulk COF materials based on different coupling reactions have been reported, the synthesis of isomeric sCOFs by exchanging the coupling reaction moieties on precursors has been barely explored. Herein, a series of isomeric sCOFs based on Schiff‐base reaction is designed to understand the effect of monomer structure on the growth kinetics of sCOFs. The distinctly different local packing motifs in the mixed assemblies for the two isomeric routes closely resemble to those in the assemblies of monomers, which affect the structural evolution process for highly ordered imine‐linked sCOFs. In addition, surface diffusion of monomers and the molecule‐substrate interaction, which is tunable by reaction temperature, also play an important role in structural evolutions. This study highlights the important roles of monomer structure and reaction temperature in the design and synthesis of covalent bond connected functional nanoporous networks.  相似文献   

8.
Macroscopic supramolecular assembly (MSA) represents a new advancement in supramolecular chemistry involving building blocks with sizes beyond tens of micrometers associating through noncovalent interactions. MSA is established as a unique method to fabricate supramolecularly assembled materials by shortening the length scale between bulk materials and building blocks. However, improving the precise alignment during assembly to form orderly assembled structures remains a challenge. Although the pretreatment of building blocks can ameliorate order to a certain degree, defects or mismatching still exists, which limits the practical applications of MSA. Therefore, an iterative poststrategy is proposed, where self‐correction based on dynamic assembly/disassembly is applied to achieve precise, massive, and parallel assembly. The self‐correction process consists of two key steps: the identification of poorly ordered structures and the selective correction of these structures. This study develops a diffusion‐kinetics‐dependent disassembly to well identify the poorly aligned structures and correct these structures through iterations of disassembly/reassembly in a programmed fashion. Finally, a massive and parallel assembly of 100 precise dimers over eight iteration cycles is achieved, thus providing a powerful solution to the problem of processing insensitivity to errors in self‐assembly‐related methods.  相似文献   

9.
Lithium–sulfur (Li–S) batteries have been disclosed as one of the most promising energy storage systems. However, the low utilization of sulfur, the detrimental shuttling behavior of polysulfides, and the sluggish kinetics in electrochemical processes, severely impede their application. Herein, 3D hierarchical nitrogen‐doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres (MoP@C/N HCSs) are introduced to Li–S batteries via decorating commercial separators to inhibit polysulfides diffusion. It acts not only as a polysulfides immobilizer to provide strong physical trapping and chemical anchoring toward polysulfides, but also as an electrocatalyst to accelerate the kinetics of the polysulfides redox reaction, and to lower the Li2S nucleation/dissolution interfacial energy barrier and self‐discharge capacity loss in working Li–S batteries, simultaneously. As a result, the Li–S batteries with MoP@C/N HCS‐modified separators show superior rate capability (920 mAh g?1 at 2 C) and stable cycling life with only 0.04% capacity decay per cycle over 500 cycles at 1 C with nearly 100% Coulombic efficiency. Furthermore, the Li–S battery can achieve a high area capacity of 5.1 mAh cm?2 with satisfied capacity retention when the cathode loading reaches 5.5 mg cm?2. This work offers a brand new guidance for rational separator design into the energy chemistry of high‐stable Li–S batteries.  相似文献   

10.
It is of great importance to exploit electrode materials for sodium‐ion batteries (SIBs) with low cost, long life, and high‐rate capability. However, achieving quick charge and high power density is still a major challenge for most SIBs electrodes because of the sluggish sodiation kinetics. Herein, uniform and mesoporous NiS2 nanospheres are synthesized via a facile one‐step polyvinylpyrrolidone assisted method. By controlling the voltage window, the mesoporous NiS2 nanospheres present excellent electrochemical performance in SIBs. It delivers a high reversible specific capacity of 692 mA h g?1. The NiS2 anode also exhibits excellent high‐rate capability (253 mA h g?1 at 5 A g?1) and long‐term cycling performance (319 mA h g?1 capacity remained even after 1000 cycles at 0.5 A g?1). A dominant pseudocapacitance contribution is identified and verified by kinetics analysis. In addition, the amorphization and conversion reactions during the electrochemical process of the mesoporous NiS2 nanospheres is also investigated by in situ X‐ray diffraction. The impressive electrochemical performance reveals that the NiS2 offers great potential toward the development of next generation large scale energy storage.  相似文献   

11.
The modernized use of nucleic acid (NA) sequences to drive nanostructure self‐assembly has given rise to a new class of designed nanomaterials with controllable plasmonic functionalities for broad surface‐enhanced Raman scattering (SERS)‐based bioanalysis applications. Herein, dual usage of microRNAs (miRNAs) as both valuable cancer biomarkers and direct self‐assembly triggers is identified and capitalized upon for custom‐designed plasmonic nanostructures. Through strict NA hybridization of miRNA targets, Au nanospheres selectively self‐assemble onto hollowed Au/Ag alloy nanocuboids with ideal interparticle distances (≈2.3 nm) for optimal SERS signaling. The intrinsic material properties of the self‐assembled nanostructures further elevate miRNA detection performance via nanozyme catalytic SERS signaling cascades. This enables fM‐level miR‐107 detection limit within a clinically‐relevant range without any molecular target amplification. The miRNA‐triggered nanostructure self‐assembly approach is further applied in clinical patient samples, and showcases the potential of miR‐107 as a non‐invasive prostate cancer diagnostic biomarker. The use of miRNA targets to drive nanostructure self‐assembly holds great promise as a practical tool for miRNA detection in disease applications.  相似文献   

12.
Prussian blue analogs exhibit great promise for applications in aqueous rechargeable sodium‐ion batteries (ARSIBs) due to their unique open framework and well‐defined discharge voltage plateau. However, traditional coprecipitation methods cannot prepare self‐standing electrodes to meet the needs of wearable energy storage devices. In this work, a water bath method is reported to grow microcube‐like K2Zn3(Fe(CN)6)2·9H2O on carbon cloth (CC) using Zn nanosheet arrays as the zinc source and reducing agent, directly serving as a self‐standing cathode. Benefiting from fast ion diffusion and high conductivity, the cathode delivers a high areal capacity of 0.76 mAh cm?2 at 0.5 mA cm?2 and excellent capacity retention of 57.9% as the current density increases to 20 mA cm?2. By coupling with NaTi2(PO4)3 grown on CC as an anode, a quasi‐solid‐state flexible ARSIB with a high output voltage plateau of 1.6 V is successfully assembled, exhibiting a superior areal capacity of 0.56 mAh cm?2 and energy density of 0.92 mWh cm?2. In particular, the device shows admirable mechanical flexibility, maintaining 90.3% of initial capacity after 3000 bending cycles. This work is anticipated to open a new avenue for the rational design of self‐standing electrodes used in high‐voltage flexible ARSIBs.  相似文献   

13.
The miniaturization of power sources aimed at integration into micro‐ and nano‐electronic devices is a big challenge. To ensure the future development of fully autonomous on‐board systems, electrodes based on self‐supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self‐supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li‐ion batteries and electrochemical supercapacitors. Current strategies for the design and morphology control of self‐supported electrodes fabricated using template, lithography, anodization and self‐organized solution techniques are outlined along with different efforts to improve the storage capacity, rate capability, and cyclability.  相似文献   

14.
Room‐temperature sodium‐sulfur (RT/Na‐S) batteries are considered among the most promising next‐generation energy storage and conversion systems because of the earth‐abundant reserves of sodium and sulfur. These batteries also possess the advantages of high theoretical gravimetric capacity, high energy density, and low cost. Herein, highly uniform Fe3+/polyacrylamide nanospheres (FPNs) are fabricated on a large‐scale by a facile, low‐cost approach. Subsequently, mesoporous nitrogen‐doped carbon nanospheres (PNC‐Ns), obtained by carbonizing FPNs, are applied as a sulfur matrix to improve the utilization of sulfur, enhance the overall conductivity of the cathode, and inhibit the shuttling of sodium polysulfides (SPSs). In addition, graphene and FPNs are simultaneously coated onto the side of the separator to form a FPNs‐graphene‐functionalized separator (FPNs‐G/separator); here, the mesoporous FPNs effectively anchor and block the SPSs, while the large specific area graphene sheets eliminate the intrinsic mechanical brittleness of the FPNs and improve the overall conductivity of RT/Na‐S batteries. When S/PNC‐Ns as a cathode and FPNs‐G/separator are assembled into an RT/Na‐S battery, it delivers a high discharge capacity (639 mAh g‐1 at 0.1 C after 400 cycles), stable cycle life (396 mAh g‐1 at 0.5 C after 800 cycles), and good rate performance (228 mAh g‐1 at 2 C).  相似文献   

15.
Sodium‐ion capacitors (SICs) have attracted enormous attention due to their high energy density and high power density. In this work, N and S codoped hollow carbon nanobelts (N/S‐HCNs) are synthesized by a self‐templated method. The as‐synthesized carbon nanobelts exhibit excellent performance in pseudocapacitance and electric double layer anions adsorption. After pairing the N/S‐HCNs cathode with a tin foil anode in a carbonate electrolyte, the obtained SIC achieves a high specific capacity of 400 mAh g?1 at 1 A g?1 (based on the mass of cathode material) and energy density of 250.35 Wh kg?1 at 676 W kg?1 (based on the total mass of cathode and anode materials). Besides, the presented SIC also demonstrates high cycling stability with almost 100% capacity retention after 10 000 cycles, which is among the best results of the reported SICs, suggesting the potential for high‐performance energy storage applications.  相似文献   

16.
Nanomeshes with highly regular, permeable pores in plane, combining the exceptional porous architectures with intrinsic properties of 2D materials, have attracted increasing attention in recent years. Herein, a series of 2D ultrathin metal–organic nanomeshes with ordered mesopores is obtained by a self‐assembly method, including metal phosphate and metal phosphonate. The resultant mesoporous ferric phytate nanomeshes feature unique 2D ultrathin monolayer morphologies ( ≈ 9 nm thickness), hexagonally ordered, permeable mesopores of ≈ 16 nm, as well as improved surface area and pore volume. Notably, the obtained ferric phytate nanomeshes can directly in situ convert into mesoporous sulfur‐doped metal phosphonate nanomeshes by serving as an unprecedented reactive self‐template. Furthermore, as advanced anode materials for Li‐ion batteries, they deliver excellent capacity, good rate capability, and cycling performance, greatly exceeding the similar metal phosphate‐based materials reported previously, resulting from their unique 2D ultrathin mesoporous structure. Therefore, the work will pave an avenue for constructing the other 2D ordered mesoporous materials, and thus offer new opportunities for them in diverse areas.  相似文献   

17.
Temperature‐enhanced solvent vapor annealing (TESVA) is used to self‐assemble functionalized polycyclic aromatic hydrocarbon molecules into ordered macroscopic layers and crystals on solid surfaces. A novel C3 symmetric hexa‐peri‐hexabenzocoronene functionalized with alternating hydrophilic and hydrophobic side chains is used as a model system since its multivalent character can be expected to offer unique self‐assembly properties and behavior in different solvents. TESVA promotes the molecule's long‐range mobility, as proven by their diffusion on a Si/SiOx surface on a scale of hundreds of micrometers. This leads to self‐assembly into large, ordered crystals featuring an edge‐on columnar type of arrangement, which differs from the morphologies obtained using conventional solution‐processing methods such as spin‐coating or drop‐casting. The temperature modulation in the TESVA makes it possible to achieve an additional control over the role of hydrodynamic forces in the self‐assembly at surfaces, leading to a macroscopic self‐healing within the adsorbed film notably improved as compared to conventional solvent vapor annealing. This surface re‐organization can be monitored in real time by optical and atomic force microscopy.  相似文献   

18.
Nanostructured conductive polymer hydrogels (CPHs) have been extensively applied in energy storage owing to their advantageous features, such as excellent electrochemical activity and relatively high electrical conductivity, yet the fabrication of self‐standing and flexible electrode‐based CPHs is still hampered by their limited mechanical properties. Herein, macromolecularly interconnected 3D graphene/nanostructured CPH is synthesized via self‐assembly of CPHs and graphene oxide macrostructures. The 3D hybrid hydrogel shows uniform interconnectivity and enhanced mechanical properties due to the strong macromolecular interaction between the CPHs and graphene, thus greatly reducing aggregation in the fiber‐shaping process. A proof‐of‐concept all‐gel‐state fibrous supercapacitor based on the 3D polyaniline/graphene hydrogel is fabricated to demonstrate the outstanding flexibility and mouldability, as well as superior electrochemical properties enabled by this 3D hybrid hydrogel design. The proposed device can achieve a large strain (up to ≈40%), and deliver a remarkable volumetric energy density of 8.80 mWh cm?3 (at power density of 30.77 mW cm?3), outperforming many fiber‐shaped supercapacitors reported previously. The all‐hydrogel design opens up opportunities in the fabrication of next‐generation wearable and portable electronics.  相似文献   

19.
Tremendous interest in self‐assembly of peptides and proteins towards functional nanomaterials has been inspired by naturally evolving self‐assembly in biological construction of multiple and sophisticated protein architectures in organisms. Self‐assembled peptide and protein nanoarchitectures are excellent promising candidates for facilitating biomedical applications due to their advantages of structural, mechanical, and functional diversity and high biocompability and biodegradability. Here, this review focuses on the self‐assembly of peptides and proteins for fabrication of phototherapeutic nanomaterials for antitumor photodynamic and photothermal therapy, with emphasis on building blocks, non‐covalent interactions, strategies, and the nanoarchitectures of self‐assembly. The exciting antitumor activities achieved by these phototherapeutic nanomaterials are also discussed in‐depth, along with the relationships between their specific nanoarchitectures and their unique properties, providing an increased understanding of the role of peptide and protein self‐assembly in improving the efficiency of photodynamic and photothermal therapy.  相似文献   

20.
The self‐assembly of nanoparticles is a challenging process for organizing precise structures with complicated and ingenious structures. In the past decades, a simple, high‐efficiency, and reproducible self‐assembly method from nanoscale to microscale has been pursued because of the promising and extensive application prospects in bioanalysis, catalysis, photonics, and energy storage. However, microscale self‐assembly still faces big challenges including improving the stability and homogeneity as well as pursuing new assembly methods and templates for the uniform self‐assembly. To address these obstacles, here, a novel silver‐coated nanopore is developed which serves as a template for electrochemically generating microcyclic structures of gold nanoparticles at micrometers with highly homogenous size and remarkable reproducibility. Nanopore‐induced microcyclic structures are further applied to visualize the diffusion profile of ionic flux. Based on this novel strategy, a nanopore could potentially facilitate the delivery of assembled structures for many practical applications including drug delivery, cellular detection, catalysis, and plasmonic sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号