首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates interfacial crack tip stress fields and the J-integral for bi-materials with plastic hardening mismatch via detailed elastic-plastic finite element analyses. For small scale yielding, the modified boundary layer formulation with the elastic T-stress is employed. For fully plastic yielding, plane strain single-edge- cracked specimens under pure bending are considered. Interfacial crack tip stress fields are explained by modified Prandtl slip-line fields. It is found that, for bi-materials consisting of two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and the J-contribution there. The implication of asymmetric J-integral in bi-materials is also discussed.  相似文献   

2.
The near crack line analysis method has been used to investigate the exact elastic-plastic solutions of a mode II crack under plane strain condition in an elastic-perfectly plastic solid. The significance of this paper is that the assumptions of the conventional small scale yielding theory have been completely abandoned. The inappropriateness of matching conditions formerly taken at the elastic-plastic boundary ths been corrected as well. By eatching the general solution of the plastic stress (but not the special solution that was adopted) with the exact elastic stresses (but not the crack tip K-dominant field) at the elastic-plastic boundary near the crack line, the plastic stresses, the length of the plastic zone and the unit normal vector of the elastic-plastic boundary, which are sufficiently precise near the crack line region, have been given. The solutions are suitable not only under the condition that the plastic region is sufficiently small but also under the condition that the plastic region is large.  相似文献   

3.
Rice's analytical Mode III solution for the relationship between anti-plane stress and anti-plane strain was used to determine the small scale plastic yielding at the tip of a two-dimensional blunt notch. The results were applied to fatigue loading. The plastic zone size and crack opening displacement derived in the present analysis were determined as functions of applied stress, geometric factors (notch radius and length) and material properties (yield stress and the work hardening rate). The minimum stress intensity required for plastic yielding at a blunt notch tip was postulated to be the experimentally observed threshold stress intensity for fatigue crack initiation. The threshold stress intensity so determined depends not only on the notch geometry but also on material properties. There is good agreement with calculated and measured values of the threshold stress intensity for fatigue crack initiation.  相似文献   

4.
The problem of a crack embedded in a layer sandwiched between two elastic adherends is analysed accounting for the influence material property mismatch on the crack tip plastic deformation, which is contained in the layer. The cohesive crack model developed by Dugdale and Barrenblatt is adopted to model the strip yielding behaviour in a constrained layer. It is found that, due to the constraint imparted by elastic adherends with higher moduli, the near tip plastic deformation exhibits a sharp transition (plastic zone grows faster than the square of stress intensity factor) from small scale to large scale yielding. Because the region of singularity dominance for a crack embedded in a layer is generally much smaller than the layer thickness when the layer has a modulus much lower than the adherends, the prevailing failure mode of most bonded joints should be under large scale yielding conditions. A model based on energy balance is proposed to determine the fracture energy of bonded joints under such condition, taking into account of the plastic dissipation in the constrained layer. Comparison with experimental results demonstrates that the theory correctly predicts the dependence of fracture toughness on layer thickness as observed in experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
In this paper a centre cracked plate subjected to cyclic tensile loading and cyclic bending moment is considered. The effect of circular holes drilled in the region of the crack tip on the ratchet limit and crack tip plastic strain range is studied. Direct evaluation of the ratchet limit and crack tip plastic strain range is solved by employing the new Linear Matching Method (LMM). Parametric studies involving hole diameter and location are investigated. The optimum hole location for reducing the crack tip plastic strain range with the least reduction in ratchet limit is identified, and located at a distance 10% of the semi-crack length from the crack tip on the side opposite the ligament for both cyclic tensile loading and cyclic bending moment cases. It is also observed that the optimum location is independent of the hole size for both cyclic loading cases.  相似文献   

6.
Directional crack growth criteria in compressed elastic–plastic materials are considered. The conditions at the crack tip are evaluated for a straight stationary crack. Remote load is a combined hydrostatic stress and pure shear, applied via a boundary layer assuming small scale yielding. Strains and deformations are assumed to be small. Different candidates for crack path criteria are examined. Maximum non-negative hoop stress to judge the risk of mode I and maximum shear stress for mode II extension of the crack are examined in some detail. Crack surfaces in contact are assumed to develop Coulumb friction from the very beginning. Hence, a condition of slip occurs throughout the crack faces. The plane in which the crack extends is calculated using a finite element method. Slip-line solutions are derived for comparison with the numerically computed asymptotic field. An excellent agreement between numerical and analytical solutions is found. The agreement is good in the region from the crack tip to around halfway to the elastic–plastic boundary. The relation between friction stress and yield stress is varied. The crack is found to extend in a direction straight ahead in shear mode for sufficiently high compressive pressure. At a limit pressure a kink is formed at a finite angle to the crack plane. For lower pressures the crack extends via a kink forming an angle to the parent crack plane that increases with decreasing pressure.  相似文献   

7.
Mode-I crack growth in an elastic perfectly-plastic material under conditions of generalized plane stress has been investigated. In the plastic loading zone, near the plane of the crack, the stresses and strains have been expanded in powers of the distance, y, to the crack line. Substitution of the expansions in the equilibrium equations, the yield condition and the constitutive equations yields a system of simple ordinary differential equations for the coefficients of the expansions. This system is solvable if it is assumed that the cleavage stress is uniform on the crack line. By matching the relevant stress components and particle velocities to the dominant terms of appropriate elastic fields at the elastic-plastic boundary, a complete solution has been obtained for ?y in the plane of the crack. The solution depends on crack-line position and time, and applies from the propagating crack tip up to the moving elastic-plastic boundary. Numerical results are presented for the edge crack geometry.  相似文献   

8.
In this work, the effect of constraint on void growth near a notch tip under mode-I loading is investigated in materials exhibiting pressure sensitive yielding and plastic dilatancy. To this end, large deformation elastic-plastic finite element analyses are performed using a two-dimensional (2D) plane strain, modified boundary layer formulation by prescribing the elastic K − T field as remote boundary conditions. The analyses are conducted for different values of K (or J) and T-stress. The material is assumed to obey a finite strain, Extended Drucker-Prager yield condition. The roles of pressure sensitivity, plastic dilatancy and yield locus shape on the interaction between the notch and a nearby void are studied by examining the distribution of hydrostatic stress and plastic strain in the ligament connecting them as well as the growth of notch and the void. The results show that void growth with respect to J is enhanced due to pressure sensitivity, and more so when the plastic flow is non-dilatational. By contrast, irrespective of pressure sensitivity, loss of crack tip constraint can significantly retard void growth.  相似文献   

9.
In order to evaluate the mechanical behavior around small-scale yielding crack tip for both plane strain and plane stress, the asymptotic governing equations and their boundary conditions by considering fracture mechanisms are formulated. A total deformation theory of plasticity with a power-law hardening is used. The analysis of the near-tip fields is carried out for both the maximum tensile and shear stress crack growth direction criteria, as well as for the complete range of mixity parameters and various strain-hardening levels. The new scheme of mixed-mode problem solution is proposed. Realationships between elastic and plastic mixity parameters are given as functions of the crack growth direction criterion and the strain-hardening exponent.Translated from Problemy Prochnosti, No. 1, pp. 60–75, January–February, 2005  相似文献   

10.
11.
With crack tip plastic zone correction, stress investigation on the fracture behavior of a Zener–Stroh crack in three-phase composite was carried out. A Zener–Stroh crack (in the matrix phase) is near a circular inclusion, with the three-phase cylindrical composite model used to represent the composite material. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. The Dugdale model of small scale yielding is used to introduce a thin strip of yielded plastic zone each crack tip. The physical problem is formulated into a set of singular integral equations, using the solution for a three-phase model with a single dislocation in the matrix phase as the Green’s function. The singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacements using Erdogan and Gupta’s method with some iterative numerical procedures.  相似文献   

12.
For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to the plane of the crack it is found that the plastic zones as well as the stress and strain fields just around the blunted tip of the crack become non-symmetric. In these cases the peak strain on the blunted tip occurs off the center line of the crack, thus indicating that the crack may want to grow in a different direction. When the anisotropic axes are parallel to the crack symmetry is retained, but the plastic zones and the near-tip fields still differ from those predicted by standard isotropic plasticity.  相似文献   

13.
The stress wave energy released from notched specimens of structural steel was measured in order to compare it with the recently proposedJ-integral which takes account of the effect of large plastic deformation around the crack tip in ductile materials. Very close agreement was observed between theJ-integral and the differential stress wave energy released. This suggests that the increment of the stress wave energy released is proportional to the decrement of the work done on the specimen during tensile testing under the plane stress condition. This result, combined with information obtained from linear elastic fracture mechanics, leads to a relationship between the differential stress wave energy released and the stress intensity factorK, [Δ(SWER)/Δa] ∝K 2. It was also found that in the region before general yielding, the stress wave energy release was proportional to the development of plastic zone size. A larger portion of the accumulated stress wave energy released was generated after general yielding due to void formation and coalescence. The accumulated stress wave energy released at the catastrophic crack growth point reached virtually the same value for each specimen, independent of the initial crack length. This implies that void formation and coalescence are not influenced by the initial crack length, but by the geometry of the crack tip.  相似文献   

14.
The basic equations of plane strain problem for the elastic-perfectly plastic crystals with double slip systems have been presented in the basis of three dimensional flow theory of crystal plasticity. Using these equations the stationary crack tip stress and deformation fields are analysed for tensile load. The fields involve an elastic angular sector and are fully continuous. An asymptotic solution is also obtained for the steadily growing crack that consists of five angular sectors: two plastic angular sectors in the front of the crack tip connected with the boundary on which the associated velocity field has discontinuities; a secondary plastic angular sector near the crack face; two elastically unload angular sectors connected with the boundary on which the discontinuity of the associated velocity field occurs. The asymptotoic solution is not unique. A family of solutions is obtained. Finally, the application of these solutions on both FCC and BCC crystals is discussed.  相似文献   

15.
The analytical investigation of the plastic zone size of a crack in three-phase cylindrical model composite material was carried out. The physical problem is simulated as a crack near a circular inclusion (a single fiber) in the composite matrix, while the three-phase cylindrical composite model is used to represent the composite matrix. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small scale yielding, a thin strip of yielded plastic zone is introduced at each crack tip. Using the solution for a three-phase model with a single dislocation in the matrix phase as the Green’s function, the physical problem is formulated into a set of singular integral equations. By employing Erdogan and Gupta’s method, as well as iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacements.  相似文献   

16.
This paper studies the effect of welding residual stresses on the near tip stress field in single edge notched bending and tensile specimens. A combined effect of mechanical stresses by the applied load and residual stress on the crack tip constraint is analyzed. Three initial residual stress distributions were considered. It has been shown that the crack tip stress field is strongly influenced by the residual stresses and a new parameter, R, is proposed to characterize the residual stress induced crack tip constraint. The results therefore suggest a three-parameter approach (CTOD, Q and R) to characterize the crack tip stress field in the presence of residual stress where CTOD sets the size scale over which large stresses and large strains develop, and the geometry constraint parameter Q and the new residual stress induced constraint parameter R control the actual crack tip constraint level. For the cases analyzed, R is in general positive, which indicates that residual stress can enhance the crack tip constraint. However, the results also indicate that the R decreases towards zero and the effect of residual stress on crack tip constraint can be neglected when a full plastic condition is approached in the specimen.  相似文献   

17.
Theoretical analysis of the processes of plastic deformation and fracture in the vicinity of a sharp crack tip becomes easier if plasticity is confined to the immediate vicinity of the crack tip, for linear elastic stress intensity factors can be used to give the surrounding elastic field, and it is possible to employ a boundary layer formulation to determine the elastic-plastic field in the immediate vicinity of the crack tip. Consideration is given to the range of applicability of the small-scale yielding approach using a simple model in which slip is confined to the crack plane. A range of stress-displacement laws is considered, the object being to assess the effect of a material's flow characteristics on the range of applicability. The conclusions are discussed with respect to plane strain crack propagation in mild steel.  相似文献   

18.
The stress fields near a crack front in a ductile solid are essentially three-dimensional (3D) in nature. The objective of this paper is to investigate the structure of these fields and to establish the validity of two-dimensional (2D) plane stress and plane strain approximations near the crack front under mixed mode (combined modes I and II) loading. To this end, detailed 3D and 2D small strain, elastic–plastic finite element simulations are carried out using a boundary layer (small scale yielding) formulation. The plastic zones and radial, angular and thickness variations of the stresses are studied corresponding to different levels of remote elastic mode mixity and applied load, as measured by the plastic zone size with respect to the plate thickness. The 3D results are compared with those obtained from 2D simulations and asymptotic solutions. It is found that, in general, plane stress conditions prevail at a distance from the crack front exceeding half the plate thickness, although it could be slightly smaller for mode II predominant loading. The implications of the 3D stress distribution on micro-void growth near the crack front are briefly discussed.  相似文献   

19.
The blunting of the tip of a crack in a ductile material is analysed under the conditions of plane strain, small-scale yielding, and mixed mode loading of Modes I and II. The material is assumed to be an elastic-perfectly plastic solid with Poisson's ratio being 1/2. The stress and strain fields for a sharp crack under mixed mode loading are first determined by means of elastic-plastic finite element analysis. It is shown that only one elastic sector exists around the crack tip, in contrast with the possibility of existence of two elastic sectors as discussed by Gao. The results obtained for a sharp crack are used as the boundary conditions for the subsequent numerical analysis of crack tip blunting under mixed mode loading, based on slip line theory. The characteristic shapes of the blunted crack tip are obtained for a wide range of Mode I and Mode II combinations, and found to resemble the tip of Japanese sword. Also the stress field around the blunted crack tip is determined.  相似文献   

20.
The paper describes a hybrid experimental-numerical technique for elastoplastic crack analysis. It consists of the experimental surface spectrum measurement of plastic strains ahead the crack tip and the boundary element method (BEM). The light scattering method is used to measure the power density spectrum from which the values of plastic strains are obtained by comparison with a calibration experiment on the same material. Plastic strains obtained experimentally are conveniently used for the calculation of unknown boundary displacement or traction vectors by the boundary element method. Instead of an iterative solution of the boundary integral equations in pure numerical solution, the boundary unknowns are computed once for a required loading level. Also asymptotic distribution of strains or stresses is not needed in the evaluation of the domain integral for the BEM formulation in the vicinity of the crack tip. Significant CPU time saving is achieved in comparison with the pure BEM solution. The method presented is illustrated by the example for a three point bending specimen with an edge crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号