首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effects of both bias voltage and heat treatment on the composition, microstructure, and associated mechanical properties of the zirconium nitride (ZrN) thin films deposited on AISI 304 stainless steel substrates by a filtered cathodic arc ion-plating (FCA-IP) system. The depositions were carried out by varying negative substrate bias voltage, from −40 Vb to −80 Vb. The deposited film specimens were heat-treated at 800 °C for 1 h. X-ray diffraction (XRD) revealed that (a) texture coefficients of (1 1 1) plane increased with negative bias, and (b) the grain size was approximately less than 15 nm, i.e. nano-scale grain size. The hardness of the deposited ZrN films was correlated with point defects, (1 1 1) texture coefficient, and crystallinity characterized for the films. For the as-deposited films, it was found that the hardness increased with decreasing (1 1 1) full width of the peak at half maximum (FWHM) and increasing (1 1 1) texture coefficient, suggesting a better crystallinity and lower grain boundary mobility in the highly textured films. The decrease in film hardness after heat treatment may be attributed mainly to the reduction of point defects present in the films. Measurements performed for the intrinsic residual stress reported a significant 5.5 GPa release in the heat-treated films, due to recovery of point defects by heat treatment.  相似文献   

2.
Young's modulus and tensile properties of cold rolled Ti–8 mass% V and (Ti–8 mass% V)–4 mass% Sn alloy plates consisting of α′ martensite were investigated as a function of tensile axis orientation in this work. A single phase of α′ (hcp) martensite is obtained in Ti–8 mass% V and (Ti–8 mass% V)–4 mass% Sn alloys by quenching after solution treatment. By 86% cold rolling, acicular α′ martensite microstructures change into extremely refined dislocation cell-like structure with an average size of 60 nm, accompanied with the development of cold rolling texture in which the basal plane normal is tilted from the plate normal direction (ND) toward transverse direction (TD) at angles of ±49° for Ti–8% V alloy and ±46° for (Ti–8 mass% V)–4 mass% Sn alloy. No apparent anisotropy of Young's modulus (E) is observed for as-quenched Ti–8% V (E = 76–83 GPa) and (Ti–8% V)-4%Sn (E = 69–79 GPa). In contrast, Young's modulus increases with increasing angle from the rolling direction (RD) to TD for cold rolled Ti–8% V (E = 72–94 GPa) and (Ti–8% V)–4%Sn (E = 63–85 GPa). The observed anisotropy of Young's modulus can be reasonably explained in terms of the cold rolling α′ texture.0.2% proof stress and tensile strength are independent of tensile orientation for cold rolled Ti–8% V and (Ti–8% V)–4%Sn alloys. In contrast, larger elongation to fracture is obtained in specimens deviated by 30°, 45° and 60° from RD than by 0°, 75° and 90°. Scanning electron microscopy (SEM) fractographs reveal that quasi-cleavage-like fracture plane appears in 0° specimen of cold rolled Ti–8% V which shows brittle fracture and other specimens of cold rolled Ti–8% V and (Ti–8% V)–4%Sn alloys are fractured accompanied with necking and dimple formation. It is suggested from these results that brittle fracture is related to the activation of limited number of slip system and Sn addition leads to the activation of multiple slip systems.  相似文献   

3.
This paper discusses the application of a DC sputtered ZnO thin film as a dielectric in an optically transparent non-volatile memory. The main motivation for using ZnO as a dielectric is due to its optical transparency and mechanical flexibility. We have established the relationship between the electrical resistivity (ρ) and the activation energy (Ea) of the electron transport in the conduction band of the ZnO film. The ρ of 2 × 104–5 × 107 Ω-cm corresponds to Ea of 0.36–0.76 eV, respectively. The k-value and optical band-gap for films sputtered with Ar:O2 ratio of 4:1 are 53 ± 3.6 and 3.23 eV, respectively. In this paper, the basic charge storage element for a non-volatile memory is a triple layer dielectric structure in which a 50 nm thick ZnO film is sandwiched between two layers of methyl silsesquioxane sol–gel dielectric of varying thickness. A pronounced clockwise capacitance–voltage (C–V) hysteresis was observed with a memory window of 6 V. The integration with a solution-processable pentacene, 13,6-N-Sulfinylacetamodipentacene resulted in an optically transparent organic field effect transistor non-volatile memory (OFET-NVM). We have demonstrated that this OFET-NVM can be electrically programmed and erased at low voltage (± 10 V) with a threshold voltage shift of 4.0 V.  相似文献   

4.
A novel method was proposed to generate high-density microwave-excited plasma along metal surfaces. In our previous work, 2.45 GHz microwaves were confirmed to propagate as surface waves along the interface between overdense (>1011 cm–3) plasma and a graphite rod biased at a negative voltage against a grounded chamber. The generated plasma showed columnar structure surrounding the rod surface, and thus it was called metal-antenna surface wave-excited plasma (MASWP) column. In this work, the effect of gas pressure on the spatial distribution of MASWP column was investigated. It was confirmed that the length of MASWP column became longer along a graphite rod (25 cm in length and 1 cm in diameter) with increasing gas pressure. In particular, at an Ar gas pressure of 33 Pa, we obtained a long plasma column covering the entire surface of the rod with a negative voltage of −150 V and an input microwave power of 100 W. The same tendency, or the extension of MASWP column with increasing gas pressure was also confirmed by using a copper rod and a stainless-steel rod instead of the graphite rod. This indicates that the extension of MASWP column with increasing gas pressure occurs independently of antenna materials.  相似文献   

5.
We have realized a device based on the coupling of an organic light-emitting diode (with tri(8-hydroxyquinoline)aluminium for light emission) as an input unit with a photoconductive material as an output unit. Various photoconductive materials like pentacene, Cu-phtalocyanine and fullerene were investigated under green light illumination with an emission peak at 550 nm. Photocurrent measurements versus light intensity and bias voltage (applied between two 50 μm distant indium-tin oxide bottom electrodes for the current to flow through the materials) were realized at room temperature a photocurrent gain around 4 is obtained when the materials are subjected to a luminance of about 5000 cd/m2 and for bias voltage of − 50 V. Besides, it was shown that to obtain a device with a fast photocurrent response by switching the light off and on, it is necessary to apply a bias voltage higher than − 200 V in these conditions, the gain is multiplied by a factor of 3.  相似文献   

6.
We have investigated a change of electrical properties of YBa2Cu3O7−δ/metal point contact immediately after its preparation depending on time, temperature as well as external bias voltage. The increase of the point contact differential resistance in time was experimentally observed at temperature above 200 K even if no external bias voltage was applied. The low external bias voltage considerably influences the time increase of the differential resistance indicating an important role of oxygen diffusion. It is shown on differential characteristics that for Au, In the parameters of tunneling barrier such as the average height and width are constant in time whereas for Al, Pb an evolution of the tunneling barrier was observed because of oxidation of Al and Pb. Applying of higher bias voltage (up to 1 V) enables the transport of oxygen even below 200 K (down to 4.2 K) and changes the electrical properties of YBCO/metal point contact interface. The differential characteristics change their behaviour from that typical for NIS contact with strong tunneling barrier to NS contact with a high transparency of the interface. All the above changes are reversible upon changing the bias voltage polarity.  相似文献   

7.
In a magnetron sputtering system, the negative substrate bias voltage has been used as a basic process parameter to modify the deposition structure and properties of coatings. In this paper we report the effect of bias voltage ranging from −40 V to −90 V on nano-scaled CrN/TiN/CrN/AlN (CrTiAlN) multilayer coatings synthesized on a Mg alloy by a closed-field unbalanced magnetron sputtering ion plating system in a gas mixture of Ar + N2. The technological temperature and atomic concentration in the multilayer coatings were controlled by adjusting the current density of different metal magnetron targets and the plasma optical emission monitor. The composition, crystallographic structure, deposition model and friction coefficient of multilayer coatings were characterized by X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and ball-on-disc testing. The experimental results show that the deposition model and friction coefficient of nano-scaled CrTiAlN multilayer coatings were significantly affected by the negative bias voltage (Vb). The nitride species in multilayer coatings mainly involve CrN, AlN and TiN, and XRD analysis shows that the crystallographic structure was face-centered cubic. Under different bias voltage conditions, the multilayer coating composition shows a fluctuation, and the Al and Cr concentrations respond in the opposite sense to the bias voltage, attaining their greatest values at Vb = −70 V. The surface and cross-sectional morphology shows deposition model change from a columnar model into non-columnar model with the increase in negative bias voltage. The friction coefficient of the nano-scaled multilayer coatings at Vb = −55 V stabilize after 10 000 cycles.  相似文献   

8.
Chromium nitride coatings with and without a carbon content being assigned as CrCN and CrN were prepared by cathodic arc evaporation. The effect of negative substrate bias voltages (10-300 V) on the microstructure, phase composition and morphology of the coating surface was studied. X-ray diffraction data show that almost all coatings crystallized in the cubic structure with (111) and (200) diffraction lines appearing only for low negative bias voltage and a (220) diffraction line being present for the coatings deposited at higher negative bias voltages. For CrN coatings obtained at −300 V a hexagonal structure was also observed. In case of CrCN coatings the (220) diffraction line shows much higher intensity than in case of CrN coatings and was significantly broadened. On the surface of the coatings a large number of macroparticles of different size was observed. An increase of bias voltage causes a reduction of the areal density of macroparticles and a decrease of the mean surface roughness Ra.  相似文献   

9.
Phase separated AlSi films composed of Al cylinders embedded in an amorphous Si matrix were prepared on conducting Si substrates by filtered cathodic arc deposition. The compositional dependence of AlSi films on a negative substrate bias showed a different trend depending on the cathode composition because of the self-sputtering process during the deposition. The porous structure was obtained from the phase separated AlSi film after removal of Al cylinders by wet etching in an ammonia solution. Scanning electron microscope images of the etched AlSi films showed that the average diameter of pores was increased from 3 nm to 7 nm by applying a negative substrate bias voltage during the deposition. The honeycomb ordered arrangement of pores was observed at 0 V and − 25 V substrate bias. The substrate temperature during the depositions had almost the same effect on the film morphologies as the negative substrate bias.  相似文献   

10.
Wei Dai 《Vacuum》2010,85(2):231-235
Cr-containing diamond-like carbon films were deposited on silicon wafers by a combined linear ion beam and DC magnetron sputtering. The influence of the bias voltage on the growth rate, atomic bond structure, surface topography and mechanical properties of the films were investigated by SEM, XPS, Raman spectroscopy, AFM, and nano-indentation. It was shown that the chromium concentration of the films increased with negative bias voltage and that a carbide phase was detected in the as-deposited films. The surface topography of the films evolved from a rough surface with larger hillocks reducing to form a smoother flat surface as the bias voltage increased from 0 to −200 V. The highest hardness and elastic modulus were obtained at a bias voltage of about −50 V, while the maximum sp3 bonding fraction was acquired at −100 V. It was suggested that the mechanical properties of the films not only depended on the sp3 bonding fraction in the films but also correlated with the influence of Cr doping and ion bombardment.  相似文献   

11.
Y. Cheng 《Thin solid films》2006,515(4):1358-1363
An investigation has been carried out to study the effect of pulse negative bias voltage on the morphology, microstructure, mechanical, adhesive and tribological properties of TiN coatings deposited on NiTi substrate by plasma immersion ion implantation and deposition. The surface morphologies were relatively smooth and uniform with lower root mean square values for the samples deposited at 15 kV and 20 kV negative bias voltages. X-ray diffraction results demonstrated that the pulse negative bias voltage can significantly change the microstructure of TiN coatings. The intensity of TiN(220) peak increased with the increase of negative bias voltage in the range of 5-20 kV. When the negative bias voltage increased to 30 kV, the preferred orientation was TiN(200). Nanoindentation test indicates that hardness and elastic modulus increased with the increase of the negative bias voltage (5 kV, 15 kV and 20 kV), and then dropped sharply at 30 kV. The adhesion between the TiN and NiTi alloy and tribological properties of TiN coated NiTi alloy depend strongly on the bias voltage parameter; the sample deposited at 20 kV possesses good adhesion strength and excellent tribological property.  相似文献   

12.
Efficiency of Zr-Si diffusion barriers in Cu metallization has been investigated. Amorphous Zr-Si diffusion barriers were deposited on the Si substrates by reactive magnetron sputtering with different negative substrate bias. The mass density of Zr-Si films increases with substrate bias voltage up to − 150 V. The deposition rate decreased with the negative substrate bias from 5.4 nm/min to 1.8 nm/min. XRD measurements show that the Zr-Si barriers have amorphous structure in the as-deposited state. The FE-SEM images show that the sizes of spherical granules on the Zr-Si film surface increase with increasing the substrate bias. The Cu/Zr-Si/Si structures were prepared and annealed in Ar ambient at temperatures varying from 500 to 650 °C for an hour. It is shown from the comparison study that the Zr-Si film deposited with − 150 V is better at maintaining good performance in Cu/Zr-Si/Si contact system than that of Zr-Si film deposited with − 50 V.  相似文献   

13.
Tantalum oxide (Ta2O5) films were formed on silicon (111) and quartz substrates by dc reactive magnetron sputtering of tantalum target in the presence of oxygen and argon gases mixture. The influence of substrate bias voltage on the chemical binding configuration, structural, electrical and optical properties was investigated. The unbiased films were amorphous in nature. As the substrate bias voltage increased to −50 V the films were transformed into polycrystalline. Further increase of substrate bias voltage to −200 V the crystallinity of the films increased. Electrical characteristics of Al/Ta2O5/Si structured films deposited at different substrate bias voltages in the range from 0 to −200 V were studied. The substrate bias voltage reduced the leakage current density and increased the dielectric constant. The optical transmittance of the films increased with the increase of substrate bias voltage. The unbiased films showed an optical band gap of 4.44 eV and the refractive index of 1.89. When the substrate bias voltage increased to −200 V the optical band gap and refractive index increased to 4.50 eV and 2.14, respectively due to the improvement in the crystallinity and packing density of the films. The crystallization due to the applied voltage was attributed to the interaction of the positive ions in plasma with the growing film.  相似文献   

14.
Piezoelectric AlN thin films were deposited on Silicon substrates by triode reactive sputtering. The variation of residual stress versus bias voltage on the substrate was investigated. A compressive stress was always observed with a maximum value for a negative substrate bias of 50 V. For higher negative bias voltage values, the compressive stress decreases. X-ray diffraction measurements showed two kinds of growth orientation. First, without bias voltage, films are well crystallized and (002) oriented. Second, with bias voltage, the (002) orientation disappears and a small peak appears (situated in the 2θ = 32°-33° range) which can be attributed to (100) orientation. Finally, the influence of compressive stress and ion bombardment on the change of orientation is discussed.  相似文献   

15.
《Vacuum》2012,86(4):415-421
In this work, Ti–Cu–N hard nanocomposite films were deposited on 304 stainless steel (SS) substrate by using pulse biased arc ion plating system with Ti–Cu alloy target. The effects of negative substrate pulse bias voltages on chemical composition, structure, morphology and mechanical properties were investigated. The composition and structure of these films was found to be dependent on the pulse bias, whereas the pulse biases put little influence on hardness of these films. The XPS spectra of Cu 2p showed that obtained peak values correspond to pure metallic Cu. Cu content in Ti–Cu–N nanocomposite films changed with pulse bias voltage. In addition, X-ray diffraction analysis showed that a pronounced TiN (111) texture is observed under low pulse bias voltage while it changed to TiN (220) orientation under high pulse bias voltage. Surface roughness of the Ti–Cu–N nanocomposite films achieved to the minimum value of 0.11 μm with the negative pulse bias voltage of −600 V. The average grain size of TiN was less than 17 nm. The mechanical properties of Ti–Cu–N hard films investigated by nanoindentation revealed that the hardness was about 22–24 GPa and the hardness enhancement was not obtained.  相似文献   

16.
An ultra-high-temperature HfB2–SiC composite was successfully consolidated by spark plasma sintering. The powder mixture of HfB2 + 30 vol.% β-SiC was brought to full density without any deliberate addition of sintering aids, and applying the following conditions: 2100 °C peak temperature, 100 °C min−1 heating rate, 2 min dwell time, and 30 MPa applied pressure. The microstructure consisted of regular diboride grains (2 μm mean size) and SiC particulates evenly distributed intergranularly. The only secondary phase was monoclinic HfO2. The incorporated SiC particulates played a key role in enhancing the sinterability of HfB2. Flexural strength at 25 °C and 1500 °C in ambient air was 590 ± 50 and 600 ± 15 MPa, respectively. Fracture toughness at room temperature (RT) (3.9 ± 0.3 MPa √m) did not decrease at 1500 °C (4.0 ± 0.1 MPa √m). Grain boundaries depleted of secondary phases were fundamental for the retention of strength and fracture toughness at high temperature. The thermal shock resistance, evaluated through the water-quenching method, was 500 °C.  相似文献   

17.
X.Q. Wang  Y.H. Zhao  B.H. Yu  J.Q. Xiao  F.Q. Li 《Vacuum》2011,86(4):415-421
In this work, Ti–Cu–N hard nanocomposite films were deposited on 304 stainless steel (SS) substrate by using pulse biased arc ion plating system with Ti–Cu alloy target. The effects of negative substrate pulse bias voltages on chemical composition, structure, morphology and mechanical properties were investigated. The composition and structure of these films was found to be dependent on the pulse bias, whereas the pulse biases put little influence on hardness of these films. The XPS spectra of Cu 2p showed that obtained peak values correspond to pure metallic Cu. Cu content in Ti–Cu–N nanocomposite films changed with pulse bias voltage. In addition, X-ray diffraction analysis showed that a pronounced TiN (111) texture is observed under low pulse bias voltage while it changed to TiN (220) orientation under high pulse bias voltage. Surface roughness of the Ti–Cu–N nanocomposite films achieved to the minimum value of 0.11 μm with the negative pulse bias voltage of ?600 V. The average grain size of TiN was less than 17 nm. The mechanical properties of Ti–Cu–N hard films investigated by nanoindentation revealed that the hardness was about 22–24 GPa and the hardness enhancement was not obtained.  相似文献   

18.
The effect of carbon nanotube (CNT) chirality on the flow of copper atoms along its core has been investigated using molecular dynamics simulations. The investigation is conducted using CNTs of different chirality, and different flow conditions such as temperatures, bias voltages and the initial positions of the copper atoms. The results show that the atoms flow in a spiral fashion along the CNT channels. The effect is most evident in the CNT channel with zigzag CNTs. The movement of the copper atoms is more erratic when the temperature is increased at a low biased voltage, regardless of the types of channel used. The initial positions of the copper atoms affect the way they converge as they move downstream along the channel. A bias voltage of 4 V favours the initiation of a spiral flow, especially when the position of the copper atoms is far from the central axis of the channel.  相似文献   

19.
Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited on glass, polycarbonate (PC), and polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The substrate dc bias voltage varied from 0 V to 50 V. Structural, electrical and optical properties of the films were investigated. The deposition rate of ZnO:Al films on glass substrate initially increased with the bias voltage, and then decreased with further increasing bias voltage. It was found that the best films on glass substrate with a low as 6.2 × 10− 4 Ω cm and an average transmittance over 80% at the wavelength range of 500-900 nm can be obtained by applying the bias voltage of 30 V. The properties of the films deposited on polymer substrate, such as PC and PET, have a similar tendency, with slightly inferior values to those on glass substrate.  相似文献   

20.
Pyrochlores with composition (NaBi)(NbCr)O6 were sintered in the temperature range of 1100–1250 °C. Dielectric properties of the ceramics were investigated in a wide range of temperatures of − 15 to 200 °C and frequencies of 1–800 kHz. The suitable sintering temperatures for (NaBi)(NbCr)O6 ceramics are suggested from 1150 to 1200 °C. The dielectric constant behavior reflects, in our opinion, the formation of the space charge and the orientational polarization. The pyrochlores have convex resistivity-temperature characteristics around the transition point, and exhibit the negative temperature coefficient of resistance characteristics. The activation energies of conductivity of samples were obtained at various sintering temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号