首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Olive pomace oil is a by-product of olive oil processing and it is considered a low-quality oil. Considering its suitable triacylglycerol (TAG) composition, this work aimed to convert refined olive pomace oil (ROPO) to a cocoa butter (CB)-like fat using sn-1,3 specific lipase, and to investigate its performance as a partial CB replacer. CB-like fat was produced from olive pomace oil by sn-1,3-specific lipase-catalyzed acidolysis in a packed bed reactor. Binary blends of CB and CB-like fat (CB:CB-like fat) were prepared in different proportions, and their physicochemical characteristics [TAG content, melting profile, solid fat content (SFC) and microstructure] were investigated. The contents of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP), 1(3)-palmitoyl-3(1)stearoyl-2-oleoyl-glycerol (POS) and 1,3-distearoyl-2-oleoyl-glycerol (SOS) in the 100:0 blend were 18.9, 33.1 and 24.7%, respectively. These contents decreased to 11.0, 20.0 and 11.7%, respectively, in the 0:100 blend. Although the melting point (28.5 °C) did not change significantly above 30% CB-like fat addition, the shape of the melting peak became wider and irregular. An isothermal solid diagram of SFC showed that better compatibility was observed at temperatures above 35 °C for all blends. Addition of over 30% CB-like fat caused significant difference in the microstructure.  相似文献   

2.
Polymorphic behavior of 1,3-rac-palmitoyl-stearoy 1-2-oleoylglycerol, 99.9% purity (POS) was examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), solubility measurements and optical microscopy in comparison with 1,3-dipalmitoyl-2-oleoylglycerol (POP) and 1,3-distearoyl-2-oleoylglycerol (SOS). Melt crystallization and solvent crystallization were examined for the occurrence of metastable and stable polymorphs. The number of independent polymorphs was four; α,δ, pseudoβ′ andβ. The lowest melting form, α, was identical to that commonly observed in POP and SOS lowest melting forms. As to the highest melting form,β, the XRD shortspacing pattern was identical toβ 1 of POP and SOS. This is consistent with crystal habit:β single crystals of POS showed the same shape as those of β1 of POP and SOS. However, the melting point ofβ (POS), 35.9°C, was lower than those ofβ 1 of POP, 36.7°C, and of SOS, 43.0°C. Correspondingly, solubility ofβ of POS was lower than that of β1 of POP below about 13°C, but higher above 13°C. POS did not possessβ 2 , which is the second stable form in POP and SOS. Two forms of6 and pseudoβ′ occurred, the latter being more stable. The structural properties ofδ showed thatδ is not identical toγ previously observed in POP and SOS. Transformation behavior from the metastable to stable polymorphs of POS showed some differences from those of POP and SOS. Presented at the AOCS annual meeting in Cincinnati, Ohio, in May 1989.  相似文献   

3.
An acetone solvent fractionation procedure was used to obtain two algal butter fractions, an algal stearin containing high amounts of 1,3-stearoyl-2-oleoyl-glycerol (SOS), and an algal mid-fraction containing high amounts of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP), and 1-palmitoyl-2-oleoyl, 3-stearoyl-glycerol (POS). Algal stearin and algal mid-fraction were blended (1:9 w/w) to yield a potential cocoa butter equivalent (CBE). The amount of POP, POS, and SOS, in algal CBE was 15.8%, 32.0%, and 24.6%, respectively, compared to 15.4%, 38.8%, and 27.7% in Cocoa butter (CB). However, a higher amount of POO and SOO in the algal CBE caused a lower solid fat content at all temperatures compared to CB. This study demonstrates the potential for producing a new algal CBE using solvent fractionation and blending techniques that can be used in chocolate and other confectionery products.  相似文献   

4.
Solvent-free lipase-catalyzed incorporation of stearic acid in palm olein by the 1,3-regiospecific Novo Lipase Lipozyme IM20 resulted in the formation of a complex mixture of fatty acid glycerides and free fatty acids. The stearoyl incorporation in palm olein gave rise to the formation of 39.3% of the desired cocoa butter-like triglycerides in the fatty acid glyceride portion, namely distearoyl-oleoyl-glycerol (SOS), palmitoyl-oleoyl-stearoyl-glycerol (POS) and dipalmitoyl-oleoyl-glycerol (POP). A combination of fractionation steps involving initially the removal of free fatty acids (FFA) from the product mixture by steam distillation under vacuum, followed by fractional crystallization of the fatty acid-free glycerides in hexane and/or acetone, gave a fat, whose triglyceride composition and melting profile were comparable to that of cocoa butter as adduced by reversed-phase high performance liquid chromatography (HPLC) and differential scanning calorimetry (DSC). The yield of the cocoa butter-like fat was approximately 25% of the weight of the original palm olein.  相似文献   

5.
This study investigated the physicochemical properties of ternary mixtures of palm mid-fraction (PMF):refined bleached deodorized palm kernel oil (RBDPKO):refined bleached deodorized palm stearin (RBDPS) for cocoa butter substitute (CBS). Fatty acid constituents, triacylglycerol constituents, solid fat contents (SFCs), melting behavior, polymorphism and crystal morphology were determined using gas chromatography (GC), high-performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), pulsed nuclear magnetic resonance (p-NMR), X-ray diffraction (XRD) and polarized light microscopy (PLM), respectively. Eight blends of various ratios of ternary mixtures were investigated based on the previously studied binary fat mixtures. The composition of palmitic (P) and oleic (O), POP, and crystal morphology (size and shape) of the PMF/RBDPKO/RBDPS [14.9/59.6/25.5 (%w/w)] mixture were comparable to cocoa butter (CB), while its melting profile (18.5 and 37 °C), SFC at 20 °C and polymorphism were different from CB. The iso-solid diagrams of the mixture displayed a monotectic effect at 20–25 °C. Therefore, the 14.9/59.6/25.5 PMF/RBDPKO/RBDPS mixture could be used as a CBS in confectionery fillings because of the crystal morphology and monotectic behaviors comparable to those of CB.  相似文献   

6.
With supercritical carbon dixoide as a reaction medium, the syntheses of cocoa butter equivalent by interesterification with various lipases were investigated. The study showed that among those five lipases tested, lipase IM-20 from Mucor miehei was the most effective and specific in synthesizing this cocoa butter equivalent product by interesterification. The yields of cocoa butter equivalent are affected by pressure, substrate oil composition, solubility and co-solvent. The best reaction conditions were: reaction pressure at 1500 psi, triglyceride with high content of POP (P, palmitate; O, oleate) and POO, reaction medium with 5.0% water, and reaction temperature at 50°C. The major component of cocoa butter, POS (S, stearate), can be increased by 6.0% by adding a small amount of carbon dioxide. The yield and melting point of the purified cocoa butter equivalent are 53.0% and 34.3°C, respectively.  相似文献   

7.
Three commercial immobilized lipases, Lipozyme RM IM, Lipozyme TL IM and Novozym 435, were screened for the production of monoacylglycerols (MAG) by glycerolysis of camellia oil in a solvent medium of tert-butyl alcohol. Novozym 435 showed the best performance and was selected to catalyze the glycerolysis reaction. Different reaction conditions for the batch reaction, substrate mole ratio, substrate concentration and temperature, were investigated. The optimal reaction conditions were determined as 6:1 mole ratio of glycerol to camellia oil at 40% (w/v) of substrate concentration in tert-butyl alcohol at a reaction temperature of 50 °C. Under these optimal conditions, the conversion rate of camellia oil was 98.7% (10 h), and the mixture of acylglycerols contained 82.0% of MAG. A packed-bed reactor (PBR) system with 4.5 g Novozym 435 was employed in continuous production. The resulting product mixture of acylglycerols contained 80.74% of MAG and was obtained at a flow rate of 0.25 mL/min of substrates. The long-term operation of the PBR system gave an average productivity of 0.698 kg MAG/(kg enzyme h) after 38 days of operation.  相似文献   

8.
Bloom was isolated from stored chocolate products for the separation of its triglycerides via high performance liquid chromatography and for the estimation of melting curves by means of thermal analysis. Different types of bloom show specific triglyceride distributions. Bloom on plain chocolates consists of cocoa butter fractions with increased concentrations of POP, POS and SOS, while nut products reveal bloom with high triolein contents. With respect to these results the accelerating effect of nut or almond oils as well as the retarding effect of milk fat may be explained.  相似文献   

9.
To manufacture beef tallow (BT)-based shortening and margarine with a reduced tendency to developing sandiness, BT/canola oil (CaO) blend (80:20 w/w), selected from the BT and CaO blends mixed in different ratios from 60:40 to 85:15 with 5% increments, was subjected to chemical interesterification (CIE) with sodium methoxide as the catalyst. The interesterified products were compared with the starting mixture in terms of solid fat content (SFC), and contents of high-melting point 1,3-disaturated long-chain fatty acid 2-monounsaturated long-chain fatty acid triacylglycerols (SUS TAGs) including 1,3-distearoyl-2-oleoyl-glycerol (StOSt), 1,3-dipalmitoy-2-oleoyl-glycerol (POP), and 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol (POSt). Under the selected conditions: 60 °C, 0.6% CH3ONa, 90 min, the CIE product had a SFC profile that meets suggested bakery fat requirements, besides a content of SUS TAGs which is 22.14% lower than that of the non-interesterified blend. Also the fat produced had stable β′ polymorphs, crystal morphology, crystal sizes (<20 μm), and could resist temperature fluctuations. The CIE product obtained herein has an increased potential for manufacturing bakery shortenings and margarines with reduced graininess formation, increasing the possibilities for the commercial use of BT and CaO.  相似文献   

10.
In this work an ultrasonic velocity technique was compared to direct pulsed NMR (pNMR) spectroscopy for the determination of the solid fat content (SFC) of anhydrous milk fat (AMF), cocoa butter (CB), and blends of AMF and CB with canola oil (CO) in the range 100 to 70% (w/w). In situ measurements of ultrasonic velocity were carried out during cooling (50–5°C) and heating (5–50°C) of the fat samples, and SFC values were calculated. The SFC were also determined simultaneously by pNMR. Peak melting temperatures determined by DSC were used as an indicator of the polymorphic state of the different fats and fat blends. Estimates of SFC obtained using pNMR and ultrasonic velocimetry did not agree. Our results suggested that ultrasonic velocity was highly dependent on the polymorphic state of the solid fat. Ultrasonic velocity in fat that contained crystals in a more stable polymorphic form was consistently higher than in fat that contained crystals in a less stable polymorphic modification. A high attenuation of the signal was observed in milkfat and CB at lower temperatures, particularly after sitting for 24 h. This high attenuation could be a product of scattering by crystallites or by microscopic air pockets formed upon solidification of the material, or it could be due to high ultrasonic absorption associated with phase transitions. This research highlights some of the problems associated with applying ultrasonics to the determination of SFC.  相似文献   

11.
The fatty acid and triacylglycerol composition of pili nut (Canarium ovatum) oil and fractions were analyzed by gas chromatography and reversed-phase high-performance liquid chromatography, respectively. The oil obtained by solvent extraction was low in polyunsaturated fatty acids and high in saturates. The polyunsaturated fatty acid (18∶2 and 18∶3) contents were less than 11%, whereas palmitic (16∶0) and stearic acid (18∶0) were 33.3 and 10.9%, respectively. The saturated fatty acid level of the low-melting fraction oil was reduced from 44.4 to 35.5% and the total unsaturated fatty acid levels were increased from 55.6 to 65% by fractional crystallization. Triacylglycerol analysis showed that the high-melting fraction (HM) from pili nut oil consisted of POP, POS, and SOS+SSO (P=palmitic acid, O=oleic acid, and S=stearic acid) in the proportion of 48.6, 38.8, and 8.7%, respectively. The physicochemical properties of the HM fraction were studied using differential scanning calorimetry and pulsed nuclear magnetic resonance. The results showed that the melting range and solid fat content of the HM fraction were very similar to those isolated from cocoa butter and olive oil. The content of POP played an important role in determining the melting range of the HM fraction. It is suggested that this HM fraction may have applications as a cocoa butter substitute in confectionery products.  相似文献   

12.
Cocoa butter-like fat was prepared from completely hydrogenated cottonseed and olive oils by enzymatic interesterification. The optimum reaction time to produce the major-component of cocoa butter, 1(3)-palmitoyl-3(1)-stearoyl-2-monoolein (POS), was 4 hr. The cocoa butter-like fat was isolated from the reaction mixture by two filtration steps. The yield of cocoa butter-like fat was 19%, based on the weight of the original oils. Chromatographic analysis of the product by reversephase high-performance liquid chromatography (HPLC) has shown it contains triglyceride components similar to those of cocoa butter, but that it has slightly more diglycerides. The melting point of this product, as measured by a differential scanning calorimeter, is 39°C, which compares well to the 36°C melting point of natural cocoa butter. Presented in part at the AOCS meeting in Cincinnati, Ohio, in 1989.  相似文献   

13.
Differential scanning calorimetry measurements of crystallization and melting characteristics of commercial samples of anhydrous milk fat (AMF), cocoa butter (CB) and hydrogenated palm kernel stearin (PKS) in ternary blends were studied. Results showed that stabilization at 26°C (either for 40 h or 7 d) did not greatly affect the melting thermogram trace of PKS. However, the effect of stabilization became prominent as CB was added into the system. Deviation of measured enthalpy from the corresponding values, calculated for thermodynamically ideal blends, showed clear interaction between all three fats. At 20°C, the strongest deviation occurred at about the AMF/CB/PKS (1∶1∶1) blend, whereas at 30°C the deviation moved toward the CB/MF (1∶1) blend. The presence of 25% AMF in PKS had little effect on its solidification capability, but solidification was adversely affected with inclusion of CB.  相似文献   

14.
Rice bran oil structured lipid (RBOSL) was produced from rice bran oil (RBO) and the medium chain fatty acid (MCFA), caprylic acid, with Lipozyme RM IM as biocatalyst. RBOSL and RBO were mixed with palm stearin (PS) in ratios of 30:70, 40:60, 50:50, 60:40 and 70:30 v/v (RBOSL to PS) to formulate trans-free shortenings. Fatty acid profiles, solid fat content (SFC), melting and crystallization curves and crystal morphology were determined. The content of caprylic acid in shortening blends with RBOSL ranged from 9.92 to 22.14 mol%. Shortening blends containing 30:70 and 60:40 RBOSL or RBO and PS had fatty acid profiles similar to a commercial shortening (CS). SFCs for blends were within the desired range for CS of 10–50% at 10–40 °C. Shortening blends containing higher amounts of RBOSL or RBO had melting and crystallization curves similar to CS. All shortening blends contained primarily β′ crystals. RBOSL blended with PS was comparable to RBO in producing shortenings with fatty acid profiles, SFC, melting and crystallization profiles and crystal morphologies that were similar. RBOSL blended with PS can possibly provide healthier alternative to some oils currently blended with PS and commercial shortening to produce trans-free shortening because of the health benefits of the MCFA in RBOSL.  相似文献   

15.
Characterization of the fatty acid and triacylglycerol composition of terebinth fruit oil and the synthesis of structured lipids (SL) were performed in this study. Interesterification reaction of terebinth fruits oil (Pistacia terebinthus L.) with caprylic acid (CA) and stearic acid (SA) to produce a SL was performed in n-hexane using immobilized sn-1,3 specific lipase from Mucor miehei. The effect of reaction conditions and relationship among them were analyzed by response surface methodology (RSM) with a four-factors five-level central composite rotatable experimental design. The four major factors chosen were enzyme load (10–30 wt% based on substrates), reaction time (7–18 h), reaction temperature (40–60 °C) and substrate mole ratio (terebinth oil:SA:CA 1:1:1–1:1:3). The best fitting quadratic model was determined by regression and backward elimination. Based on the fitted model, the optimal reaction conditions for the incorporation of CA and SA were found to be temperature 50 °C; time 18 h; enzyme load 30 wt%; substrate ratio 1:1:3. Under these optimum conditions, the incorporation of SA and CA could be obtained as 19 and 14%, respectively.  相似文献   

16.
Structured lipids (SL) with similar fatty acid (FA) composition and distribution to human milk fat (HMF) were synthesized by lipase-catalyzed acidolysis of chemically interesterified palm stearin (IV = 35.6) with mixed FA of stearic acid and myristic acid and FA from rapeseed oil, sunflower oil, and palm kernel oil in a continuous packed bed reactor. Response surface methodology (RSM) was used to optimize the reaction system with three selected parameters, namely residence time, temperature, and substrate molar ratio. The best-fitting quadratic models were obtained for the contents of palmitic acid (PA) and PA at the sn-2 position (sn-2 PA) by multiple regressions and the determination coefficient (R 2) values for the models were 0.9886 and 0.9799, respectively. The optimal conditions generated from the models were as follows: residence time, 2.7 h; temperature, 58 °C; substrate molar ratio, 9.5 mol/mol. Under these conditions, the contents of PA and sn-2 PA were 28.8 and 53.2%, respectively, and other FA observed in the experiments were all within the range of corresponding FA of HMF. The similarity of the product obtained to HMF was evaluated by the cited model. The scores for total and sn-2 FA of the product were 45.2 and 38.4, respectively, and the total score for the product was 83.6, which indicated a high degree of similarity of the product to HMF.  相似文献   

17.
《Ceramics International》2022,48(13):18392-18400
High melting point and hardness of boron carbide make it extremely difficult to be directly prepared as hollow microsphere. However, precursor derived method is an effective approach to prepare ceramic materials with complex shape. Therefore, in this work a novel boron carbide precursor, poly[1,7-bis(4-chlorophenyl)-m-carborane] (P4CB), was synthesized. The ceramic yield of the precursor P4CB reached as high as 90.25% at 900 °C in nitrogen. Oxidation of P4CB in air was barely observed below 500 °C, and a passive oxidation was exhibited beyond 700 °C. The P4CB/PAN slurry was prepared and coated on a polyoxymethylene (POM) ball substrate. After air crosslinking, substrate decomposition and heat-treatment at 1100 °C in Ar atmosphere, boron carbide hollow microsphere with diameter of approximate 1.34 mm and average shell thickness of 30 μm was finally obtained. The novel precursor could be also utilized to fabricate boron carbide ceramics with different shapes due to its high ceramic yield.  相似文献   

18.
Crystallization kinetics of the three main components of cocoa butter, the triacylglycerols POP, POS, and SOS (where P, O, and S stand for palmitic, oleic, and stearic acids, respectively) were studied by combined differential scanning calorimetry and polarized light microscopy. The morphologies, nucleation kinetics, growth kinetics, and phases of the grains formed were identified with this system. The experimental data, as well as two different models to simulate crystallization and to predict behavior of the pure triacylglycerols, are presented. The first model is based on a macroscopical approach to solidification by using time-temperature-transformation (TTT) diagrams and the additivity principle. It allows prediction of the proportion of the different phases formed for any given thermal path imposed on the sample once the TTT diagram is known for the product. It is illustrated for SOS at constant cooling rates and is compared with experimental results. The second model directly simulates growth of the spherulites in the sample by using nucleation and growth rates that are determined experimentally. It provides a view of the structure as it would be observed with a microscope and shows evolution of the heat released in the sample. Isothermal solidification of POP at 15°C is displayed. The experiment and the model are in good agreement.  相似文献   

19.
The structural composition and thermal properties of the products of enzymatic interesterification of triolein and tristearin were investigated. The biocatalyst for the reaction was an immobilized Candida antarctica lipase, SP435. Enzyme load of 10% (w/w reactants) produced 72% of desired total products. Oleoyl-distearoyl triglycerides (SSO, OSS) had higher melting points than dioleoyl-stearoyl triglycerides (OOS, SOO) because the sample contained larger amounts of stearic acid than oleic acid residues. SOS and OSO were hardly produced (0.2 to 1.2%), which indicates that SP435 acted as a nonspecific lipase when catalyzing the interesterification of triolein and tristearin. The maximal yield of OSS and SSO (46.9%) was achieved with a 1.2 mole ratio of triolein to tristearin. As the proportion of tristearin was increased, the production of SOO and OOS decreased, the melting profile of the interesterified triglycerides shifted toward higher melting forms, and the solid fat content increased, indicating formation of hard fats.  相似文献   

20.
1,3‐Distearoyl‐2‐oleoyl‐glycerol, 1‐palmitoyl‐2‐oleoyl‐3‐stearoyl‐glycerol and 1‐stearoyl‐2‐oleoyl‐3‐arachidoyl‐glycerol are typical high‐melting symmetrical monounsaturated triacylglycerols (Hm‐SMT) found in cocoa butter improver (CBI). These triacylglycerols help to increase the hardness of chocolate products in tropical climates. In the present study, natural CBI products were produced from mango (Mangifera indica, Linn) kernel fat (MKF) by selective three‐stage fractionation using acetone. The second stearin (fraction I) from the first precipitate of MKF by fractionation for 180 min at 15 °C contained 86.9% of Hm‐SMT, and the third stearin (fraction II) obtained from fraction I by further fractionation for 180 min at 18 °C was enriched with 94.4% Hm‐SMT. High percentages of such triacylglycerols in these products contributed to higher slip melting points (36.5–37.7 °C) than commercial cocoa butter and cocoa butter equivalent (26.7 and 27.9 °C). Also, their differential scanning calorimetry properties and solid fat content values were superior to those in traditional confectionery fats, indicating that the tailored stearins could be used as ideal CBI. In particular, the hard fat blends consisting of 55–70% cocoa butter (CB) and 30–45% fraction II were considered as the preferred heat‐resistant chocolate ingredients. In addition, the mixture of the oleins (fraction III) was rich in diunsaturated and triunsaturated triacylglycerols and showed similar thermal properties to super palm oil, thus making it more suitable as special fat ingredients and modified fat sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号