首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了铸轧AZ31镁合金的高温拉伸性能和变形机制.在300~450℃条件下,分别以恒定拉伸速率10-3 s-1和10-2 s-1进行拉伸至失效试验,在真实应变率为2×10-4~2×10-2 s-1的范围内进行变应变率拉伸试验.当拉伸速率为10-2s-1时,试样在400℃和450℃的延伸率均超过100%;当拉伸速率为10-3 s-1时,试样在400℃和450℃的延伸率均超过200%,该条件下的应力指数n≈3,蠕变激活能Q=148.77 kJ·mol-1,变形机制为溶质牵制位错蠕变和晶界滑移的协调机制.通过光学金相显微镜和扫描电子显微镜观察显示试样断口处存在由于发生动态再结晶和晶粒长大而形成的粗大晶粒,断裂形式为空洞长大并连接导致的韧性断裂.   相似文献   

2.
对不同温度下退火处理后的细晶TC4合金板材进行超塑性拉伸变形,研究该合金在750~850℃,应变速率为3×10-4~1×10-3 s-1条件下的超塑性拉伸变形行为,分析晶粒尺寸、变形温度和β相含量对合金性能的影响。结果表明:退火后的(α+β)型细晶Ti-6Al-4V合金表现出良好的超塑性,并且晶粒越细,最佳超塑性变形温度越低。晶粒直径为2.5μm、β相含量(体积分数)为9.6%的TC4合金在温度为800℃、应变速率为1×10-3 s-1的变形条件下,伸长率最大,达到862%。不同晶粒度合金的应变速率敏感系数m均随变形温度升高先上升后下降,最高达0.61。β晶粒处于α晶粒三叉晶界处,升温或拉伸变形时聚集并沿α晶界长大,形成细长的β晶粒并逐渐变粗大,因此在900℃以上高温下合金的超塑性变形能力降低。  相似文献   

3.
研究了TA15钛合金超塑性变形后显微组织的演变及变形条件对超塑性变形行为的影响。结果表明:在变形温度为850~950℃、应变速率为1×10-4~1×10-3s-1超塑性拉伸时,TA15钛合金表现出良好的超塑性变形性能,且在900℃,5.5×10-4s-1变形条件下,延伸率最大为803.3%。在应变速率不变的条件下,随着变形温度的升高,α相晶粒尺寸增大,β相含量增加,晶粒仍保持细小、等轴状态。在变形温度一定时,随着应变速率的降低,α相晶粒尺寸增大,β相含量增加。同时变形程度对显微组织有显著影响,拉伸后不同部位的显微组织均有一定程度的粗化,变形程度越大,晶粒粗化的越明显,并伴有α相到β相的转变。变形过程中,加工硬化与变形软化相互竞争,表现为传统超塑变形的稳态流动特征。  相似文献   

4.
采用TA15钛合金板材,研究了在860~980℃,8.3×10-4~1.7×10-3s-1条件下进行的超塑拉伸性能。结果标明:随着变形温度的升高,延伸率先增加后降低;在940℃、应变速率为1.7×10-3s-1、垂直轧制方向获得最大延伸率为1370%。随着变形温度的升高和拉伸速度的降低,等轴α晶粒尺寸增大。变形温度为940℃时诱发次生α相的析出,少量的层片组织对提高延伸率具有一定的作用。  相似文献   

5.
研究了真空环境中TA32钛合金在950℃,初始变形速率在5.32×10-4~2.08×10-2s-1条件下的超塑性变形行为。结果表明,不同应变速率条件下,板材的流变应力曲线特征和显微组织演变呈现显著不同。在应变速率较低条件下(5.32×10-4 ~3.33×10-3s-1),拉伸真应力-应变曲线呈传统超塑变形的稳态流动特征,变形后的板材中初生α相晶粒尺寸较大;在高应变速率(8.31×10-3 s-1~2.08×10-2 s-1)条件下,拉伸真应力-应变曲线中流变应力增大到峰值后快速单调递减直到断裂,变形后的板材中初生α相发生动态再结晶,晶粒尺寸与低应变速率条件拉伸的板材相比显著细化。在950℃下,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间,当应变速率为5.32×10-4s-1时,板材具有最佳的超塑性性能,拉伸延伸率可达519%。断裂区分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

6.
针对一种镍基粉末高温合金进行了热变形特性的研究.研究结果表明,该合金的最佳变形温度区间为1050~1175℃,最大允许变形量为40%.当变形温度t=1125℃、应变速率ε=101s-1或ε=100 s-1时,热变形后该合金的平均晶粒度为10级.  相似文献   

7.
研究了Cr17铁素体不锈钢在高温拉伸试验过程中应变速率对合金断面收缩率的影响,并对其发生机制进行了分析。合金在500℃下以不同应变速率(1.43×10-6~1.33s-1)拉伸至断裂,测试断面收缩率,并利用电子探针对晶界成分进行了观察测试。结果表明:应变速率从1.43×10-6 s-1升高至1.43×10-2 s-1,断面收缩率降低,约在1.43×10-2 s-1时达到最低值。然后,随着应变速率增加至1.33s-1,断面收缩率升高。经电子探针测试证实,断面收缩率达到最低值的样品,硫在晶界上偏聚,其他应变速率拉伸的样品没有观察到硫的晶界偏聚。基于多晶金属弹性变形的微观理论,分析这些试验结果,证实了此合金在拉伸试验中具有应变速率脆性的基本特征——临界应变速率。  相似文献   

8.
通过正向温挤压获得了细晶微观组织的AZ31B镁合金。研究了在310~460℃范围内,应变速率1×10-3~1×100/s下的超塑性流变行为。结果表明,在415℃、1×10-3/s的条件下AZ31B镁合金具有良好的超塑性,最大延伸率可达380%。应变速率敏感指数达到0.47。通过光学显微镜和扫描电镜(SEM)分别观察了AZ31B镁合金在超塑变形过程中的微观组织演变和断口形貌。晶界滑移机制为AZ31B超塑变形的主要机制。  相似文献   

9.
变形态Mg-Nd合金的超塑变形行为   总被引:2,自引:1,他引:1  
研究变形态Mg 2 .5Nd 0 .5Zn 0 .5Zr合金的超塑变形行为发现 ,3 75℃是该合金的最佳超塑变形温度 ,变形速率在 1× 10 - 2 s- 1 时延伸率达到 3 2 9%;当变形速率提高到 2× 10 - 2 s- 1 时 ,该合金的延伸率仍可达到 2 13 %。分析不同真应变下的组织发现 ,晶粒在变形初期发生动态再结晶 ,晶粒得到破碎而变得细小 ,随着变形程度的增加 ,晶粒长大程度较小  相似文献   

10.
为了确定AZ31镁合金轧制工艺参数,利用Gleeble-3500热模拟试验机进行热压缩试验以测试其热变形行为,并根据动态材料模型理论得到其热加工图.当变形温度为380~400℃、应变速率为3~12 s-1时,功率耗散效率大于30%,属于动态再结晶峰区;在该区域进行异步轧制变形退火处理后得到平均晶粒直径为2.3μm的细晶组织,抗拉强度为322.7 MPa,延伸率为19.6%.当应变速率大于15 s-1时,属于流变失稳区,250~300℃低温加工时合金的塑性显著降低,350~400℃高温加工时合金出现混晶组织.   相似文献   

11.
镍基耐蚀合金GH536B(G3)的高温变形特性   总被引:1,自引:0,他引:1  
通过Thermomacmaster-Z热模拟机试验和显微组织观察,研究了镍基耐蚀合金GH536B(G3,%:0.002C、20.30Cr、17.50Fe、8.70Mo、1.32W、1.90Cu、0.20Nb)1 030~1 300℃、应变速率1~25 s-1的应力-应变曲线以及温度对合金断面收缩率的影响,高温变形下合金组织的变化和应变速率对合金动态再结晶温度的影响.结果表明,G3合金变形抗力大,热成形温度区间小,随应变速率增大,热塑性降低;Φ中10 mm×140 mm试样拉伸速率为100 mm·s-1,合适的成形温度为1 130~1 260℃,当拉伸速率为200 mm·s-1,合适的成形温度为1 130~1 220℃.  相似文献   

12.
采用高温拉伸试验研究了GH3230合金在温度1144~1273 K、应变速率1×10-3~1×10-1s-1条件下的热变形行为。计算了变形激活能,并采用Zener-Hollomon参数法构建合金的高温变形的本构关系。结果表明:温度和应变速率对GH3230合金的高温力学性能有显著影响,流变应力随变形温度的升高而降低,随着应变速率的增加而升高。GH3230合金的高温流变行为可用Zener-Hollomon参数的双曲正弦函数来描述,热变形材料常数为:A=5.179×1016s-1,a=0.0088,n=3.9893,并计算出合金的平均变形激活能Q=455.203 k J·mol-1,且变形激活能更容易受到应变速率的影响。扫描电镜(SEM)断口分析表明GH3230合金在高温下(1144~1273 K)应变率范围为1×10-3~1×10-1s-1时的拉伸断裂都是由损伤引起的韧性断裂,且温度对断口形貌影响不大,但应变速率增大会使韧窝尺寸和深浅变小。  相似文献   

13.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5.32×10^-4~2.08×10^-2 s^-1条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5.32×10^-4~3.33×10^-3 s^-1)条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8.31×10^-3 s^-1~2.08×10^-2 s^-1)条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5.32×10^-4 s^-1时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

14.
基于动态材料模型,建立了TC18钛合金的热加工图,分析了能量耗散率、非稳定参数和热加工图随应变速率、变形温度的变化规律。结果表明,在800~900℃范围内,应变速率对TC18钛合金的热变形能量分配影响较为显著。不同应变下的能量耗散率峰值对应的变形工艺参数均为变形温度800~820℃、应变速率5×10-4~1×10-3s-1,该参数即为TC18钛合金等温压缩变形的最佳工艺参数范围。随着应变增大,820℃/1×10-2s-1附近的非稳定变形区域逐渐缩小,当应变达到0.3时消失;而(860~900)℃/(1~10)s-1的非稳定区随应变增大而逐渐扩大,并向低温区域扩展。  相似文献   

15.
将SiO2颗粒填入AZ61镁合金基体上预先开出的沟槽中,利用搅拌摩擦工艺(FSP)成功地将颗粒均匀地搅拌进镁合金中。利用扫描电镜(SEM)观察了试样搅拌区颗粒分布情况,分别对高温退火和高温拉伸试样的晶粒长大情况进行了观察,测量了试样搅拌区及其附近区域的硬度,利用扫描电镜进行了断口形貌分析并对试样高温变形机制进行了分析。结果表明:大部分SiO2颗粒被均匀地搅拌进镁合金中,仅有少量的颗粒以聚集块形式存在;未掺入SiO2颗粒的搅拌摩擦试样搅拌区平均硬度为HV78,而掺入SiO2颗粒的试样搅拌区平均硬度为HV110,提高了HV30左右;合金中的SiO2颗粒有效地抑制了静态退火、高温拉伸和搅拌摩擦过程中的晶粒长大,使其保持在3μm以内;试样在400℃下以3×10-1s-1的应变速率拉伸得到的伸长率最大,达到了453%,实现了材料高应变速率下的超塑性。  相似文献   

16.
在300 K及20 K、不同应变速率下对CT20钛合金板材进行单向拉伸,利用扫描电镜、透射电镜等观察拉伸应变组织及断口形貌,揭示了应变速率对CT20钛合金孪生变形行为的影响规律。结果表明:在300 K下,应变速率的提高使CT20钛合金板材的强度提高,延伸率降低;20 K下,应变速率的提高使CT20钛合金板材的强度和延伸率均下降。在300 K、应变速率高于6.67×10-1s-1和20 K、应变速率低于6.67×10-3s-1的条件下,CT20钛合金板材的变形均为滑移和孪生共同作用。20 K下,CT20钛合金拉伸应变速率超过6.67×10-3s-1时,孪生变形受到抑制,材料的延伸率迅速降低。  相似文献   

17.
Ti-IF钢铁素体变形动态再结晶临界应变模型   总被引:6,自引:0,他引:6  
用Thermecmaster-Z热模拟试验机试验得出成分为0.006 7%C-0.045 0%Ti的Ti-IF(无间隙原子)钢在变形温度750~900℃和变形速率0.1~40 s-1时的应力-应变曲线,确定了Zener-Holloman参数Z与应变速率.ε和温度T(K)的关系式Z=.εexp(39 507/T),并建立了临界应变εc与原始晶粒尺寸d0和Z参数的临界应变方程εc=2.314 4×10-3×d-0.8003 9×Z0.050。结果表明,在相同变形速率下,850℃变形时动态再结晶最易发生,当变形温度提高至900℃(两相区)时,即使在低变形速率(1 s-1),也不发生动态再结晶。当变形速率大于1 s-1时,Ti-IF钢热加工时不能出现动态再结晶。临界应变预测值与实测值比较,平均误差≤5%。  相似文献   

18.
采用THERMECMASTOR-Z热模拟试验机研究了TC11钛合金在变形温度780~1080℃,应变速率0.001~1 s-1范围的热变形行为,并采用金相显微镜研究了变形温度对TC11钛合金组织的影响,主要研究结果如下:变形温度对TC11钛合金的流动应力有显著影响,在较高温度或较低应变速率时,变形呈稳态流动特征;在较低温度或较高应变速率时,变形呈流变软化特征.在β单相区,当应变速率为1 s-1时,组织主要为拉长的β晶粒和少量的动态再结晶晶粒;当应变速率为O.01~0.1 s-1时,变形机制主要为动态再结晶;当应变速率在0.001 s-1附近时,变形机制为动态回复.在(α+β)两相区,变形温度870~960℃,应变速率0.001 s-1附近时,变形机制为超塑性.  相似文献   

19.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

20.
研究了Ti-55钛合金板材在应变速率为8.30×10~(-4)~1.32×10~(-2)s~(-1)、变形温度885~935℃条件下的超塑性拉伸变形行为和显微组织演化。结果表明:细晶Ti-55钛合金板材表现出良好的超塑性,在温度925℃和应变速率为6.64×10~(-3)s~(-1)条件下,最大延伸率可达987%,即使在1.32×10~(-2)s~(-1)的高应变速率条件下也获得了872%的断裂延伸率。在应变速率不变的条件下,变形温度的升高,动态再结晶程度增大,有利于细小等轴的α相晶粒发生相转变。变形速率的不断降低,α相晶粒容易聚集并长大,α相含量减少,β相含量增加,材料塑性反而有所下降。此外,在超塑性变形的过程中,变形区域晶粒长大速度要大于夹头区域,随着变形程度的增大,α相的含量也随之减少,Ti-55材料的变形能够促使晶粒的聚合长大和α相的相转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号