首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the mobility and distribution of cadmium (Cd), nickel (Ni) and zinc (Zn) in four contaminated soil profiles from Bangladesh. The sources of contamination of these profiles were tannery wastes, city sewage and the wastes of pharmaceutical and paper mill factories at different locations in Bangladesh. The samples were collected from the A-, B- and C-horizons of each profile: two sub-samples from the A-horizon at depths of 0–5 cm (A1) and >5 cm (A2), and one sample each from the B- and C-horizons. Soil samples were analysed for total metal content by dissolution in aqua regia followed by sequential extraction of the fractions based on their varying solubility. There were six operationally defined groups of extraction sequences: water soluble (F1), exchangeable (F2), carbonate (F3), oxide (F4), organic (F5) and residual (F6). The total concentration of Cd, Ni and Zn in the A-horizon (0–5 cm) ranged from 0.10 to 0.62, from 31 to 54 and from 85 to 838 mg kg−1, respectively. In the B- and C-horizons, the concentrations of these metals decreased many fold, particularly in the city sewage profile where the decrease for Cd and Zn was approximately fourfold. The distribution of metals among the chemical fractions depended on their total concentrations. In the A1-horizon, Cd had the highest mobility factor [MF = (F1+F2+F3)/(F1+F2+F3+F4+F5+F6) × 100] at 41–43% and Ni had the lowest at 3–13%, while Zn, showed intermediate values at 8–25%. The MF decreased with depth in all soil profiles. Among the fractions, the residual fraction contained the lowest levels of Cd but the highest levels of Ni and Zn. This state affected their relative mobility and distribution in soil profiles. Of the soil profiles, the mobility of all metals was higher in the city sewage soil than in any of the other three soils investigated, suggesting that the former may create a health risk by contaminating agricultural products and ground water as it also contained higher amounts of Cd and Zn.  相似文献   

2.
The effectiveness of cell‐free rhamnolipid biosurfactant, derived from the culture medium at the end of fermentation was investigated for the removal of two different kinds of oil from contaminated sandy soils. The crude cultivation medium, containing 13.2 g L?1 of rhamnolipids, had a surface tension, interfacial tension and critical micellar concentration of 30 mN m?1, 2 mN m?1 and 60 mg L?1, respectively. The evaluation of biosurfactant in the culture medium (BM) and oil concentrations in the removal of oil from different contaminated sandy soil was performed using a statistical experimental design tool. Oil in sandy soil, containing predominantly aromatic or paraffinic hydrocarbons (5 to 10% w/w), was removed by as much as 91 and 78%, respectively, in the presence of reduced amounts of BM (6.3 to 7.9 g L?1). The progress of oil removal was monitored for 101 days and results indicated that removal efficiency in sandy soil with aromatic characteristics was relatively stable over the entire period. Based on these studies, it is concluded that use of a BM was effective in reducing oil concentrations in contaminated sandy soil. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
4.
Use of brassica plants in the phytoremediation and biofumigation processes   总被引:1,自引:0,他引:1  
In recent decades, serious contamination of soils by heavy metals has been reported. It is therefore a matter of urgency to develop a new and efficient technology for removing contaminants from soil. Another aspect to this problem is that environmental pollution decreases the biological quality of soil, which is why pesticides and fertilizers are being used in ever-larger quantities. The environmentally friendly solutions to these problems are phytoremediation, which is a technology that cleanses the soil of heavy metals, and biofumigation, a process that helps to protect crops using natural plant compounds. So far, these methods have only been used separately; however, research on a technology that combines them both using white cabbage has been carried out.  相似文献   

5.
The increasing sulphur (S) deficiency in soils of several parts of world has led to the use of fertilizer S, an important factor in enhancing the production and quality of crops. Very limited information is available on the use of elemental sulphur (S0) as a fertilizer, its oxidation into SO42- and transformation into organic S in semiarid subtropical soils. We studied the impact of three temperature regimes on the mineralization of soil organic S, and the oxidation and immobilization of S0 in acidic (pH 4.9), neutral (pH 7.1) and alkaline (pH 10.2) subtropical soils of north-western India. Repacked soil cores were incubated under aerobic conditions (60% water-filled pore space) for 0, 14, 28 and 42 d with and without incorporated S0 (500 g g-1 soil). Temperature had profound effects on all three soils processes, the rates of mineralization of native soil organic S, oxidation of applied S0 and transformation of S0 into soil organic S being greatest at 36 °C, irrespective of soil pH. Mineralization of native soil organic S (without added S0) resulted in the accumulation of 39, 66 and 47 g SO42-–S g-1 soil in acidic, neutral and alkaline soil in 42 d period at 36 °C. Of the total mineralization, the majority (62 – 74%) occurred during the first 14 d period. Oxidation rate of added S0 during initial 14 d period at 36 °C was highest in alkaline soil (292 g S cm-2 d-1), followed by neutral soil ((180 g S cm-2 d-1) and lowest in acidic soil (125 g S cm-2 d-1). Of the applied 500 g S0 g-1 soil, 3.2 – 10.0%, 6.8 – 15.4% and 10.0 – 23.0% oxidized to SO42-, and 13.4 – 28.6%, 16.0 – 29.0% and 14.6 – 29.0% were transformed into organic S in 42 d period in acidic, neutral and alkaline soil, respectively. The results of our study suggest that in order to synchronize the availability of S with plant need, elemental S may be applied well before the seeding of crops, especially in acidic soil and in regions where temperature remains low. Substantial mineralization of native soil organic S in the absence of applied S0 and immobilization of applied S0 into organic S suggest that the role of soil biomass as source and sink could be exploited in long term S management.  相似文献   

6.
The paper describes the results of treatment of soil samples, deriving from a dismissed industrial site, contaminated with several metals: Hg, Ni, Co, Zn, Pb, Cu, Cr, As and organic substances. The soil was subjected to remediation based on a process in which an oxidising leaching agent was produced electrochemically in-line in an undivided electrochemical cell reactor equipped with a Ti/Pt-Ir anode and a stainless steel cathode. Leaching of the soil samples was performed under dynamic conditions using a leaching column. A subsequent regeneration of the leaching solution, which consisted in electrodeposition of metals and electro-oxidation of organic substances, was carried out in a packed-bed reactor equipped with a centrally positioned graphite rod, serving as an anode, and stainless steel three-dimensional filling as a cathode. The study was focused on how and to which extent the metals present in the soil, as organic complexes, can be solubilised and how the process rates are impacted by the solution pH and other process variables. Data obtained under non-oxidising conditions, typically adopted for leaching of metals, are compared with the performance of chlorine-enriched leaching solutions. The results obtained under various conditions are also discussed in terms of the total organic carbon (TOC) removal from the water phase.  相似文献   

7.
8.
外源微生物对土壤中镉形态及微生物多样性的影响   总被引:5,自引:3,他引:5       下载免费PDF全文
采用土壤盆栽模拟实验,研究接种氧化节杆菌、耳葡萄球菌、嗜麦芽窄食单胞菌对紫花苜蓿吸收土壤中Cd的作用效果.结果表明,3种微生物在土壤中Cd浓度分别为5、20、50mg?kg-1时均能增强紫花苜蓿对Cd的富集吸收,在3种加菌处理中紫花苜蓿地上部分的Cd积累量与单种植苜蓿处理相比分别显著提高了11.38%~20.67%、5.58%~16.54%、20.68~23.51%;地下部分分别显著提高了19.50%~32.30%、8.62%~19.38%、22.77%~39.23%.各处理中根际和非根际土壤Cd形态分布均为残渣态>交换态>碳酸盐结合态>铁锰结合态>有机结合态.紫花苜蓿可促进土壤中Cd向交换态EXC转化,与未种植物处理相比,其根际土壤中EXC态Cd显著提高了3.40%~6.51%;非根际提高了3.16%~5.48%.3种微生物加入显著增强了植物对土壤中Cd向EXC态转化作用,根际土壤中EXC态Cd与未种植物处理分别增加了11.23%~21.49%、6.37%~13.27%、10.78%~27.76%;非根际提高了7.71%~16.30%、4.64%~13.84%、9.62%~20.75%.BIOLOG ECO微平板法分析结果表明,外源微生物加入对Cd污染土壤中微生物数量、活性、多样性指数等均有显著性增大;主成分分析表明不同处理下土壤微生物利用碳源的种类和能力有所差异;聚类分析结果可合理地将各处理按对土壤中Cd有效态转化作用情况归类.  相似文献   

9.
Removal of dichloro‐diphenyl‐trichloroethane (DDT) from soils using surfactant‐enhanced solubilisation was studied both in batch and continuous flow arrangements to determine if there were advantages to using a combination of non‐ionic (Tween and Brij) and anionic surfactants. It was observed that the presence of the anionic surfactant sodium dodecyl benzene sulphonate improved the DDT removal efficiency, but had a potentially negative effect on flow rates in column leaching experiments at concentrations over 0.1%. The potential for re‐use of the surfactant mixture was studied and demonstrated by removing DDT and its metabolites from the surfactant solution using activated carbon. © 2011 Canadian Society for Chemical Engineering  相似文献   

10.
壳聚糖及其衍生物对土壤重金属的稳定化效应   总被引:1,自引:0,他引:1       下载免费PDF全文
宋俊颖  何绪文  黄占斌 《化工进展》2019,38(9):4308-4319
随着工业的发展,特别是采矿冶炼等行业的发展,使含重金属的废弃物进入土壤,造成土壤重金属污染,对环境和人体健康产生极大威胁。本文以湖南怀化某铅锌矿渣堆放地周围污染土壤为研究目标,通过壳聚糖及其衍生物对污染土壤中重金属离子的稳定化实验,筛选出对目标重金属(Cd2+、Pb2+、Zn2+)具有最佳稳定效果的稳定剂,探究了稳定剂对土壤中重金属离子的稳定机理,并在模拟酸雨淋溶条件下研究了最佳稳定剂对重金属离子的长期稳定化效果。稳定化实验结果表明,壳聚糖及其衍生物对土壤重金属离子均有稳定化作用,其中羧甲基壳聚糖的稳定效果最好,其使污染土壤中重金属离子的可迁移性及生物有效性明显降低。通过重金属形态分析、扫描电镜(SEM)及X射线衍射(XRD)分析得出稳定剂与土壤中重金属离子发生反应生成络合物,并通过机理分析进一步验证了羧甲基壳聚糖的稳定效果最好;淋溶实验表明,羧甲基壳聚糖对土壤中重金属离子具有长期稳定性,经其稳定后土壤中重金属离子以更稳定不易迁移的形态存在,且使土壤环境得到改善,增强了土壤本身对重金属离子的稳定。羧甲基壳聚糖有望成为修复重金属(Cd2+、Pb2+、Zn2+)污染土壤的优良稳定剂。  相似文献   

11.
土壤重金属污染具有污染过程复杂、危害突出和修复困难等特点,修复刻不容缓。电动力学辅助植物修复(EKAPR)致力于弥补电动力学和植物修复各自劣势,协同发挥二者优势,解决电动力学无法彻底清除土壤重金属和植物修复缓慢、作用范围有限等突出问题。本文通过分层总结,归纳了电动力学辅助植物修复重金属的研究现状、影响类型与作用特征、相互作用关系及强化修复机制等。综述表明,EKAPR体系电动力学和植物相互作用,存在有利或不利于重金属清除的影响,在克服自身的局限方面两者也存在很多协同效应;EKAPR过程主要受电场类型、电场布置与强度、pH演变、添加剂等的控制。电动力学通过改善重金属的空间及形态分布,促进养分吸收及刺激根际分泌等作用机制,可有效提高重金属植物吸收富集及污染土壤修复效果。EKAPR被认为是新颖、绿色、可持续的原位重金属污染场地修复技术,在实现污染场地修复方面具有较大发展前景。分析表明,现有研究工作开展较少,若干技术问题和应用挑战仍然存在。加大关键变量影响特征分析及调控、电动力学辅助下植物营养与重金属分布变化机制、累积特征及强化机制研究是克服难点及推动EKAPR技术应用的关键。  相似文献   

12.
The electrokinetic remediation of an historically contaminated soil is described. The soil was contaminated with a range of metals including lead, zinc, manganese, copper and arsenic, polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and xylene (BTEX). A small‐scale experiment (973.2 g dry weight soil), utilising a planar electrode configuration, investigated the potential for moving metals and organics. After 23 days treatment at a current density of 3.72 A /m−2, 44% of calcium and 29% of manganese were removed from the soil at the cathode. Of the other contaminating metals, zinc and lead moved towards the cathode, but with no significant removal from the soil. Movement of PAHs was also observed, with a 94% reduction in concentration in the third of the soil closest to the anode after 23 days. A larger scale experiment (46.7 kg dry weight soil) utilised a hexagonal array of tubular anodes surrounding a central tubular cathode. Treatment for 112 days led to acidification of the soil to pH 2.59 closest to the anode in a direct line between the anode and cathode. Soil not directly in line between the electrodes was not acidified significantly. Movement of metal ions was observed, in line with the electrodes, with concentrations of lead and arsenic increasing to 162% and 171% of starting concentrations closest to the anode, respectively, and those of zinc, copper and manganese decreasing to 42%, 68% and 57%, respectively. At positions not directly in line with the electrodes, no significant metal movements were observed. Overall, there was no significant removal of contaminating metals from the soil. PAHs and BTEX compounds were moved by electroosmosis towards the cathode, with soil concentrations of PAHs reduced from 720 mgkg−1 to 4.7 mgkg−1 after 22 days. PAHS (28 mg) and benzene (9660 mg) were recovered in granular activated carbon (GAC) columns. © 2000 Society of Chemical Industry  相似文献   

13.
14.
李丽  朱琨  张兴 《腐植酸》2008,(3):9-13
叙述了腐植酸与重金属作用的机理,即腐植酸通过络合、螯合、还原作用使重金属固定在土壤颗粒表面,从而影响它们的迁移并减少了重金属水溶态,降低其毒性。介绍了腐植酸在治理土壤重金属污染中的应用和相应的净化效果以及影响腐植酸吸附重金属的因素,如土壤类型、PH值、作用时间等,并指出腐植酸在降低土壤重金属活性(毒性)作用中存在的问题及发展趋势。  相似文献   

15.
张金永  汪林  王明新  肖扬  韩莹 《化工进展》2020,39(11):4726-4733
以典型石油烃正十六烷为特征污染物,采用批次实验研究机械化学处理对模拟石油烃污染土壤的修复效果及影响因素;采用GC/MS分析土壤中正十六烷的降解产物,通过XRD、FTIR、SEM和BET对处理前后土壤样品进行表征,并分析土壤有机碳含量的变化,揭示石油烃污染土壤的机械化学法修复机理。结果表明,在球磨机转速为500r/min,球料比为35∶1,大、中、小钢球配比为2∶5∶3,正十六烷投加量为2.5μL/g时,球磨4h后正十六烷降解率达95.86%。球磨处理过后土壤颗粒表面变粗糙,助磨效果较好的石英含量显著增多。与处理前相比,球磨处理后未检出短链烷烃,表明正十六烷降解较为彻底。土壤有机碳含量和吸附能力显著提高,使得残留低浓度石油烃难以全部去除。机械化学法修复石油烃污染土壤具有快速、高效、彻底等优势,具有良好的应用前景。  相似文献   

16.
Removal of cadmium and lead from soil using aescin as a biosurfactant   总被引:2,自引:0,他引:2  
Remediation of a soil contaminated with cadmium or lead was performed by a soil washing process using aescin as a biosurfactant. The removal of cadmium and lead from the soil was evaluated as a function of aescin concentration and pH in a batch process. A 30-mM aescin solution was most effective in the removal of cadmium and lead at pH 6.8. Cadmium and lead migrated from the soil to the aescin-containing aqueous phase, depending on the pH value. We found that 41% of cadmium (pH 7.8) and 25% of lead (pH 2.8) in the soil matrix migrated into a 30-mM aescin solution. Also, the complexation of aescin with cadmium and lead ions was confirmed by Fourier transform infrared spectroscopy and electrical conductivity measurements. As a result, the maximal complexation capacity of aescin with metal ions was approximately aescin/cadmium=2∶1 and aescin/lead=3∶1 on a molar basis. It was suggested that aescin may sequester cadmium and lead ions by the carboxylic and saccharide moieties. Then, the complex of aescin with cadmium or lead may migrate to the aqueous phase as the result of dispersion.  相似文献   

17.
Ryegrass was grown in pots containing metal-enriched soil which was adjusted to different pH levels with acid or lime, and supplied with either ammonium sulphate or calcium nitrate as the N fertilizer.Concentrations of heavy metals in the grass tops increased with decreasing soil pH to an extent diminishing in the order: Mn, Ni, Cd, Zn, Pb, Cu, Cr.Nitrate application was the more appropriate treatment for the production of lower concentrations of heavy metals in the grass because its use by the grass increased the pH of the soil, whereas added ammonium sulphate released acid to the soil during nitrification and plant uptake of ammonium. After three successive cuttings and repeated dressings, soil pH (H2O) was 3 units higher with nitrate than with ammonium, resulting in a marked reduction in the uptake of the more pH-sensitive metals in soils where nitrate was applied  相似文献   

18.
丁欢 《水泥工程》2023,36(6):6-8
通过制定相关技术方案,按照相关国家标准要求对武汉某含锑污染土壤项目进行协同处置。结果显示熟料中重金属含量及浸出全部低于国家标准限值要求,技术及产品安全性良好;水泥窑烟气监测方面,同时在协同处置期间对窑尾烟气中含重金属、非甲烷总烃、SO2、NOx、颗粒物、氨、HCl、HF、二恶英等指标进行了全面监测,结果显示所有指标均满足相关标准及规范的要求。整个项目总计接收、处置污染土壤9 294.7 t,处置过程中各项指标正常,水泥质量达标。  相似文献   

19.
Smelter slag and sulphur dioxide are waste products of non‐ferrous pyrometallurgical processes. Dissolution behaviour of Co, Cu, Fe, Ni and Zn from smelter slag in aqueous sulphur dioxide was studied. Experiments were carried out in batch mode, under near ambient conditions. Under the conditions studied, 81% Co, 60% Fe, 35% Ni and 68% Zn extraction were achieved within 3 h, while Cu behaved very differently. The initial dissolution of Cu was rapid, but subsequent precipitation lowered its overall extraction. The precipitation of Cu was more temperature sensitive than its dissolution. At 65°C all the dissolved Cu was precipitated in 2.5 h. The successive precipitation was explained based on the solution chemistry of the Cu‐Fe‐S(IV) system. Dissolution kinetics of the other metals were evaluated using the shrinking core model. Diffusion through the product/ash layer appeared to be the rate controlling step. SEM‐EDS analysis was used to characterize the slag and to confirm the existence of a product/ash layer after leaching.  相似文献   

20.
Ammonium thiosulphate solution, (ATS, (NH4)2S2O3, 12% NH4-N and 26% S), is a nitrogen-sulphur fertiliser which can also inhibit nitrification, inhibit area hydrolysis and also solubilize micronutrients in alkaline soils. A three year field study was conducted in northeastern Italy to compare the growth, yield, and nutrient uptake of irrigated maize (Zea mays L.) fertilised with 250 kg N ha-1 urea-ammonium nitrate solution (UAN, 30-0-0) or UAN plus ATS. Dry matter (DM) yield, sulphur (S) and nitrogen (N) uptake were measured at several growth stages. Grain was measured and analyzed at maturity. Maize grain yield and N uptake were increased respectively 30.6% and 42.2% in the first year by adding ATS to UAN. Adding 10% by weight ATS to UAN (22.8 kg S ha-1) increased grain yields by 1.9, 1.7 and 1.6t ha-1 for the three years of the study. To distinguish whether the response was due to S or other ATS attributes, ATS was compared to an equivalent amount of S from single superphosphate (SSP). Plots fertilised with ATS gave grain yields 0.5 and 1.2 t ha-1 greater than plots fertilised with equal rates of S from SSP in the last two years of the study. This added yield from ATS over SSP may have been due to beneficial effects of ATS on N or micronutrient availability or to the split application of the S from ATS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号