首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
唐华  张明磊  杨超 《测控技术》2018,37(6):72-75
为了解决电力系统故障选线中信号的采样、传输和存储问题,提出了一种全新的基于压缩感知理论的信号压缩的方法.该方法的采样频率不用考虑奈奎斯特采样频率.采样的信号是有选择性的部分信号.并通过设计重构算法来准确恢复该全部信号.考虑到一般条件下信号稀疏度不确定性,采用一种分割增广拉格朗日收缩算法(SALSA)来重构这些稀疏度不确定的信号.通过采用快速傅里叶变换基与高斯随机矩阵并且和SALSA相结合能够很好地实现信号压缩重构.对重构信号采用小波分解,获取重构信号的主要特征,分析零序电流模极大值的极性,找出其中一条与另外两条零序电流模极大值极性不同的线路,从而确定此线路为故障线路.  相似文献   

2.
在Chirp矩阵的压缩采样中,针对离散傅里叶变换(DFT)相关检测算法重构精度较差、可用信号稀疏度有限的问题,提出一种基于离散Chirp-Fourier变换(DCFT)的重构算法。根据信号稀疏度k增加采样数,使采样矩阵具有对k值大的信号有准确重构的能力;选择采样信号k个最大的DCFT幅值所对应的原子索引来击中信号非零元的位置,以减少DFT相关算法中交调干扰造成的最佳原子误检测;利用最小二乘法估计各非零元的幅值,进一步减小重构误差。对长度为1 681的一维信号进行采样和重构实验,结果表明,该算法重构的信号稀疏度增大至DFT相关检测算法的4倍,并且时间复杂度仍为O(kN)。  相似文献   

3.
黄钧琴  曹磊  刘小金 《福建电脑》2014,(4):168-169,39
小电流接地系统中单相接地故障的暂态信号往往作为故障选线的重要依据。本文对Prony算法的原理和计算机实现进行了分析,并通过仿真示例说明了Prony算法能够有效辨识接地故障信号的幅值和相位信息,进而实现为小电流接地系统接地故障选线提供重要参考。  相似文献   

4.
针对矿井视频监控图像受噪声干扰影响大,采用常规的图像采样和压缩方法存在图像模糊和传输时间过长等问题,提出了一种矿井视频监控图像分块压缩感知方法。该方法通过建立矿井视频监控图像分块压缩感知模型,在井下图像采集节点利用稀疏随机矩阵进行压缩采样,然后在地面监控中心利用正交匹配追踪( OMP )算法重构图像。研究结果表明,采用本文算法的重构图像误差小、重构时间短,所需信号采样点数少;与扰频Hadamard矩阵相比,采用稀疏随机矩阵和高斯随机矩阵作为观测矩阵对图像信号重构的峰值信噪比( PSNR)提高4 dB~5 dB;本文算法与基于小波基的算法相比,信号重构的PSNR提高1 dB~4 dB,重构时间缩短至少80%以上。  相似文献   

5.
为有效提高体域网的实时性和降低体域网的功耗,提出一种基于块稀疏贝叶斯学习的体域网心电压缩采样方法。该方法在体域网框架下,利用压缩采样理论,在体域网的传感节点利用二进制随机观测矩阵对心电信号进行压缩采样,远程监护中心获得采样值之后,利用块稀疏贝叶斯学习重构算法和离散余弦稀疏变换矩阵对心电信号进行重构。实验结果表明,当心电信号压缩率在70%~90%时,基于块稀疏贝叶斯学习的重构算法要比其他重构算法的重构信噪比高出3 dB~21 dB。该方法能有效减少数据采样,减轻后续的数据存储、数据传输压力,提高体域网的实时性。同时该方法具有功耗低,易于硬件实现的优点。  相似文献   

6.
压缩感知重构算法在实际应用中需要预知信号稀疏度,而信号的稀疏度通常是未知的.为此,改进压缩采样匹配追踪(CoSaMP)算法的自适应性,提出一种稀疏度自适应贪婪算法.对信号稀疏度进行初始估计,结合SAMP算法思想,以残差值比对为终止条件,在CoSaMP算法框架下进行稀疏度逐步增大的递归运算,实现精确重构.仿真实验结果证明,该算法重构精度高、抗噪能力强,同时具备稀疏度自适应的特点.  相似文献   

7.
压缩传感,是近年来新出现的一种采样定理。它的特点是对信号进行采样所需要的条件远远小于Nyquist采样速率。这种采样定理要求信号是稀疏的或者是可压缩的,并能在采样时对信号数据进行压缩,然后通过非线性重建算法完美重建信号。它突破了Nyquist采样定理,因此具有广阔的发展前景。重建算法中有一类称为匹配追踪算法,文中围绕改进的匹配追踪算法在图像压缩中的应用展开了研究,对OMP算法、ROMP算法进行了实现,并对算法本身以及其重构效果做出了比较;针对按列处理速度较慢的缺点,使用了分块处理的方法,降低运算时测量矩阵的规模,实验表明,分块处理确实能够加快运算速度。由于自然信号进行稀疏变换后,稀疏度不确定,造成重构时迭代次数不够合理。针对这个现象,文中提出了如何确定合适的迭代次数的方法,提高重建的精确度。这个方法本身会消耗时间,可以在权衡了重构精确度要求和时间要求后确定是否使用。  相似文献   

8.
基于综合选线策略的小电流单相接地故障选线装置   总被引:1,自引:0,他引:1  
针对单一选线原理的不足,提出了一种综合选线策略,即基于稳态分量的零序导纳法、零序电纳增量法和零序电导法、基于暂态分量的暂态电流互积求和法;基于该综合选线策略开发了一套小电流接地系统单相接地故障选线装置。该选线装置能根据不同的中性点接地方式通过键盘选择不同的选线算法,实现基于稳态接地故障和暂态接地故障的综合选线。实验结果表明,该选线装置对于高阻接地故障、电弧性接地故障等都具有较高的准确性。  相似文献   

9.
压缩感知理论是一种利用信号的稀疏性或可压缩性而把采样与压缩融为一体的新理论体系,它成功地克服了传统理论中采样数据量大、资源浪费严重等问题。该理论的研究方向主要包括信号的稀疏表示、测量矩阵的设计和信号的重构算法。其中信号的重构算法是该理论中的关键部分,也是近年来研究的热点。本文主要对匹配追踪类重构算法作了详细介绍,并通过仿真实验结果对这些算法进行了对比和分析。  相似文献   

10.
基于差分的稀疏度自适应重构算法   总被引:1,自引:0,他引:1  
针对压缩感知贪婪迭代重构算法要求给定信号稀疏度或迭代阈值的缺点,提出一种基于差分的稀疏度自适应重构算法.该算法在信号稀疏度未知的情况下,利用测量矩阵Φ与残差的相关系数的变化的不均衡特性,来选择重构信号的支撑集,以此逼近原始信号的稀疏度,达到重构的效果.仿真结果表明,在相同采样率下,文中算法可以获得较好的重构效果,尤其在采样率较低(采样率≤0.5)的情况下,这种优势更加明显.  相似文献   

11.
为大幅度减少采集路面不平度信号的存储空间,提高采集速度,基于压缩感知理论针对标准路面的不平度信号进行压缩采样和重构。首先验证了B级路面不定度信号在频域下的近似稀疏性,并进行了信号的压缩采样。针对现阶段凸优化方法和常用的三种贪婪算法的不足,提出一种改进的模拟退火算法与子空间追踪算法相结合的稀疏度自适应匹配追踪算法,利用改进的模拟退火算法快速搜索匹配最优的稀疏度,并采用子空间追踪算法快速重构信号。仿真实验对比五种重构方法,结果表明,凸优化方法精度较高,耗时过长;OMP算法和SP算法耗时极短,但需要预先进行实验来估测信号的稀疏度,实用性低;SAMP算法能实现稀疏度的自适应匹配,但匹配的误差较大,且耗时较长;提的新方法具有良好的精度和较快的执行速度,R-squares和耗时的均值分别为0.9837和2.77 s,稀疏度估测效果较好,且采样点数的增加不影响算法重构信号的速度。  相似文献   

12.
主要研究电力系统小电流接地故障选线问题中交流信号的采集与处理。选用TI公司的高速DSP TMS320LF2812(150M),在信号处理上采用72点采样的差分傅里叶算法,并在线选算法中利用小波分解得到零序电压、电流的暂态量来辅助选线,很好地解决了交流信号采集与处理问题,同时新的选线算法大大提高了选线精度。  相似文献   

13.
针对配电网小电流单相接地故障率越来越高,提出一种新的配电网小电流单相接地故障选线方法.将双树复小波变换用于配电网小电流接地故障选线,并结合能量相对熵作为故障选线的依据.通过双树复小波变换来处理小电流信号,利用能量相对熵确定故障线路.并通过仿真对该方法的正确性和有效性进行验证.结果 表明,该方法可以快速确定故障线路.这种...  相似文献   

14.
针对目前煤矿配电网故障选线方法在相关故障特征不明显时存在故障选线失效,基于单一模态分量和单一故障特征的故障选线方法的选线准确度较低等问题,提出了一种基于变分模态分解(VMD)的小电流接地故障融合选线方法。利用VMD将母线中各出线的故障零序电流分解为多个模态分量,根据模态分量的故障特征确定VMD层数,并选取故障特征明显的模态分量作为故障选线的有效模态分量;分别计算各出线故障零序电流有效模态分量的暂态能量和波形相似度;根据各出线有效模态分量的暂态能量占比和波形相似度占比,构建基于暂态能量的故障选线判据和基于波形相似度的故障选线判据,并将2种故障选线判据融合,形成基于VMD的故障融合选线算法。利用电磁暂态仿真软件ATP/EMTP搭建煤矿配电网模型,在不同接地故障电阻、故障初相角和故障位置的单相接地故障场景下,对所提出的故障融合选线方法进行验证,结果表明:在配电网发生各种单相接地故障时,基于VMD的小电流接地故障融合选线方法不受故障位置的影响,较能量法和相关性聚类法的故障选线正确率分别提高了17%和50%,且不受故障类型影响,可应用于小电流接地故障选线。  相似文献   

15.
在压缩感知理论中,设计好的稀疏重构算法是一个比较重要,同时也是一个具有挑战性的问题.稀疏重构的基本目标是用较少的数据样本,通过解一个优化问题完成信号或者图像重构.关于稀疏重构过程,一个重要的研究方向是在数据受噪声干扰的情况下,如何高效快速地重建原信号.本文提出了基于共轭梯度最小二乘法(Conjugate gradient least squares,CGLS)和最小二乘QR分解(Least squares QR,LSQR)的联合优化的匹配追踪算法.该算法采用Alpha散度来测量CGLS和LSQR之间的离散度(差异度),并通过离散度来选择最优的解序列.实验分析表明基于CGLS和LSQR的联合优化的匹配追踪算法在压缩采样的信号受噪声干扰情况下具有较好的恢复能力.  相似文献   

16.
结合压缩感知理论(CS),针对压缩采样匹配追踪算法在多输入多输出正交频分复用(MIMO_OFDM)系统信道估计应用中需要利用信号稀疏度的先验条件,而实际中稀疏度又难获得的情况,提出一种信号稀疏度自适应的压缩采样改进匹配追踪算法(CoMSaMP)。该算法采用具有理论支撑的原子弱选择标准作为预选方案,并设置首次裁剪阈值来减少算法多余的迭代,降低算法在信道估计中的复杂度,裁剪方式的改进保证了重构精度的提高,最终实现MIMO-OFDM稀疏信道估计中信号的稀疏度自适应。仿真结果表明:与原算法相比,该算法在同等信噪比条件下具有更优的信道估计性能,从而提高了频谱利用率,同时降低了复杂度,在稀疏度较高时,提出的算法具有更好的对噪声的抗干扰能力。  相似文献   

17.
在盲信号分离技术中,当混合矩阵是病态情况时,基于信号稀疏性的两步法可用来解决这一问题,而如何估计混合矩阵则是两步法的关键。提出了一种估计混合矩阵的新方法,即通过搜索重构观测信号采样点,每次只需搜索出少数某源信号取值占优的采样点,就可以通过这些采样点处的重构观测信号数据,估计出混合矩阵的某一列。依次类推,可以估计出整个混合矩阵。该方法估计混合矩阵时对源信号的稀疏度要求较低,其实现算法不需优化过程,计算简单,因此其实用性较高。仿真结果表明了该方法有效,有很好的性能。通过大量的仿真试验给出了方法的定量性能分析。  相似文献   

18.
工业“大数据”时代的到来为机械装备健康监测带来了新机遇。然而,由于运行环境异常、人为因素干扰以及采集设备故障等,机械装备健康监测大数据中往往混杂大量与健康状态无关的异常值或缺失值数据,从而造成数据质量下降。为保障数据质量,提高振动信号恢复效果,提出一种基于变分模态分解和双向压缩感知(Variational Mode Decomposition, VMD; Bidirectional Compressed sensing, BiCS; VMD-BiCS)的振动信号重构方法。首先通过变分模态分解对采样数据进行去噪处理,其次在压缩感知框架下构造观测矩阵、稀疏表示字典矩阵,然后基于子空间追踪(Subspace Pursuit, SP)算法从两个方向重构出稀疏表示向量。在此基础上利用离散余弦变换构造稀疏矩阵,利用压缩感知原理重构双向信号,最后对重构信号加权得到最终重构信号,实现对残损振动信号的数据恢复。分别采用仿真信号和西储大学公开轴承数据进行修复实验,将该方法用于对压缩感知传统重构算法进行改进,发现所提方法在时域指标均方根误差上均优于传统重构算法。并从修复效果角度验证发现该方法成功还原了外圈故...  相似文献   

19.
针对压缩感知中未知稀疏度信号的重建问题,提出一种新的压缩感知的信号重建算法,即自适应正则化子空间追踪(Adaptive Regularized Subspace Pursuit,ARSP)算法,该算法将自适应思想、正则化思想与子空间追踪(Subspace Pursuit,SP)算法相结合,在未知信号稀疏度的情况下,自适应地选择支撑集原子的个数,利用正则化过程实现支撑集的二次筛选,最终能实现信号的精确重构。仿真结果表明,该算法能够精确重构原始信号,重建效果优于SP算法、正则化正交匹配追踪(ROMP)算法、稀疏度自适应匹配追踪(SAMP)算法、压缩采样匹配追踪(CoSaMP)算法等。  相似文献   

20.
研究局部场电位信号(Local Field Potential,LFP)的重构问题.依据传统的采样定理对LFP信号进行采样,将会产生庞大的数据量,为LFP信号的传输、存储及处理带来巨大压力.为降低LFP信号的采样速率,减少有效的采样样本,提出压缩感知的局部场电位信号重构的新方法.利用LFP信号在变换域上的稀疏性,通过随机高斯测量矩阵将LFP信号重构模型转化为压缩感知理论中的稀疏向量重构模型.仿真结果表明,采样速率为奈奎斯特采样速率的一半即可准确重构LFP信号,且正交匹配追踪(OMP)重建算法要优于基追踪(BP)重建算法;当选用离散余弦矩阵(DCT)作为稀疏表示矩阵时,信号在正交匹配追踪和基追踪两种重构算法下都有很高的重构精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号