首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the formation of Al2O3‐SiO2 fiber‐reinforced Al2O3‐SiO2 aerogels with the content of fibers in the range from 40 wt% to 55 wt% by sol‐gel reaction, followed by supercritical drying. The structure and physical properties of fiber‐reinforced Al2O3‐SiO2 aerogels are studied. We find that the fiber‐reinforced Al2O3‐SiO2 aerogels can be resistant to the temperature of 1200°C. The integration of fibers significantly improves the mechanical properties of Al2O3‐SiO2 aerogels. We find that the bending strength of fiber‐reinforced Al2O3‐SiO2 aerogels increases 0.431 MPa to 0.755 MPa and the elastic modulus increases from 0.679 MPa to 1.153 MPa, when the content of fibers increases from 40 wt% to 50 wt%. The thermal conductivity of the fiber‐reinforced Al2O3‐SiO2 aerogels is in the range from 0.0403 W/mK to 0.0545 W/mK, depending on the content of fibers.  相似文献   

2.
Carbon fiber‐reinforced gelatin composites have been prepared in our laboratory to obtain a novel biomaterial of improved mechanical properties. The swelling behavior (swelling rate, swelling kinetics, maximum solvent uptake, etc.) for both continuous carbon fiber‐reinforced gelatin composite (CL/Gel) and short carbon fiber‐reinforced gelatin composite (CS/Gel) are investigated. Experimental data show that the swelling process of the original gelatin and gelatin matrixes in both composites follows a second‐order kinetics. The swelling of the gelatin matrixes in both composites proceeds slower than that of the pristine gelatin, and depends on fiber form and fiber volume fraction (Vf). Results indicate that the presence of carbon fibers suppresses the swelling of the gelatin matrixes in both composites. It is found that the gelatin matrix in CS/Gel possesses a smaller swelling rate and maximum solvent uptake than that in CL/Gel. A mechanism governing these phenomena is discussed in this article. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 994–998, 2000  相似文献   

3.
The basic material used in this work was a low‐molecular‐weight polybutadiene with isocyanate endgroups in the main chain. The isocyanate groups were used for crosslinking of the oligomeric polybutadiene with glycerol as a three‐functional crosslinker. The prepared polybutadiene‐based polyurethane gel was subsequently vulcanized with sulphur. The effect of sulphur content on mechanical and electrical properties of resulting materials was investigated with the aim to find an optimum matrix composition for the preparation of composite materials. Several types of glass fiber fabric reinforcement differing in fabric weight and fabric ply thickness were tested. Mechanical properties of composites based on the optimum matrix composition and different types of glass fibers were measured and compared. Being vulcanized with sulphur, the polybutadiene was found to possess improved mechanical properties and retain an excellent electroinsulating character. Moreover, the sulphur‐vulcanized polybutadiene was proved good as a matrix for the preparation of glass fiber‐reinforced composite materials having enhanced tensile and flexural properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Kudzu fiber‐reinforced polypropylene composites were prepared, and their mechanical and thermal properties were determined. To enhance the adhesion between the kudzu fiber and the polypropylene matrix, maleic anhydride‐grafted polypropylene (MAPP) was used as a compatibilizer. A continuous improvement in both tensile modulus and tensile strength was observed up to a MAPP concentration of 35 wt %. Increases of 24 and 54% were obtained for tensile modulus and tensile strength, respectively. Scanning electron microscopy (SEM) showed improved dispersion and adhesion with MAPP. Fourier transform infrared (FTIR) spectroscopy showed an increase in hydrogen bonding with an increase in MAPP content. Differential scanning calorimetry (DSC) analysis indicated little change in the melting temperature of the composites with changes in MAPP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1961–1969, 2002  相似文献   

5.
The present study evaluates on the static tensile behavior of glass fiber reinforced polymer (GFRP) composites at 50% and 70% volume fractions of reinforcement tested at room (25 °C), 70 °C, 90 °C, and 110 °C temperatures with 1, 10, 100, 500, and 1000 mm/min crosshead speeds to investigate the impact of high temperature on the mechanical properties and different dominating failures modes. The experimental results reveal that with increase in crosshead speeds the tensile strength of the composite is increasing. The effect of crosshead speeds and temperature with changing fiber volume fractions affects the GFRP composite. Although both the composite systems are found to be crosshead speed sensitive. Crosshead speed sensitivity seems to be more unpredictable at high temperature and at high crosshead speed. Furthermore, it appears to be more unprecedented nature of fluctuation with high fiber volume fraction. The crucial parameters required during the materials designing in various structural components were evaluated and modelled with the help of Weibull constitutive model. The fractography analyses were done to identify the various dominating failure modes in the GFRP composite. There was no significant change found in the glass transition temperatures (Tg) of both the composite system when exposed to different temperature environments. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44715.  相似文献   

6.
在沥青混凝土中掺加短丝法和长丝切断两种不同方法制备的聚酯工程纤维,并对两种混凝土试块进行残留稳定度实验、冻融循环后的劈裂抗拉性能试验和抗车辙能力试验,发现通过掺加工程纤维后,沥青混凝土的几项重要性能有了显著提高,且两种方法制备的工程纤维的增强效果相近。  相似文献   

7.
The utilization of disposable chopsticks is very popular in Taiwan, China, and Japan and is one of the major sources of waste in these countries. In this study, recycled disposable chopstick fiber was chemically modified. Subsequently, this modified fiber and polypropylene‐graft‐maleic anhydride were added to polypropylene (PP) to form novel fiber‐reinforced green composites. A heat‐deflection temperature (HDT) test showed an increase of approximately 81% for PP with the addition of 60‐phr fibers, and the HDT of the composite could reach up to 144.8°C. In addition, the tensile strength, Young's modulus, and impact strength were 66, 160.3, and 97.1%, respectively, when the composite material was 40‐phr fibers. Furthermore, this type of reinforced PP would be more environmentally friendly than an artificial‐additive‐reinforced one. It could also effectively reduce and reuse the waste of disposable chopsticks and lower the costs of the materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
This study represents the behavior of flexural test of methyl methacrylate modified unsaturated polyester polymer concrete beam reinforced with glass‐fiber‐reinforced polymer (GFRP) sheets. The failure mode, load–deflection, ductility index, and separation load predictions according to the GFRP reinforcement thickness were tested and analyzed. The failure mode was found to occur at the bonded surface of the specimen with 10 layers of GFRP reinforcement. For the load–deflection curve, as the reinforcement thickness of the GFRP sheet increased, the crack load and ultimate load greatly increased, and the ductility index was found to be the highest for the beam with the thickness of the GFRP sheet at 10 layers (6 mm) or 13 layers (7.3 mm). The calculated results of separation load were found to match only the experimental results of the specimens where debonding occurred. The reinforcement effect was found to be most excellent in the polymer concrete with 10 layers of GFRP sheet reinforcement. The appropriate reinforcement ratio for the GFRP concrete beam suggested by this study was a fiber‐reinforced‐plastic cross‐sectional ratio of 0.007–0.008 for a polymer concrete cross‐sectional ratio of 1 (width) : 1.5 (depth). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
An artificial neural network (ANN) model is established for predicting the fiber diameter of melt‐blown nonwoven fabrics from the processing parameters. An attempt is made to study the effect of the number of the hidden layers and the hidden layer neurons to minimize the prediction error. The artificial neural network with three hidden layers (5, 2, and 3 neurons in the first, second, and third hidden layer, respectively) yields the minimum prediction error, and thus, is determined as the preferred network. The square of correlation coefficient of measured and predicted fiber diameters shows the good performance of the model. Using the established ANN model, computer simulations of the effects of the processing parameter on the fiber diameter are carried out. The results show great prospects for this research in the field of computer‐assisted design of melt‐blowing technology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4275–4280, 2006  相似文献   

10.
In this paper, short carbon‐fiber‐reinforced nylon 6/clay nanocomposites are prepared via melt compounding, and fiber breakage and dispersion during processing are studied. The influences of clay and processing conditions on fiber breakage and dispersion are taken into consideration. It is found that the presence of organoclay can improve fiber dispersion, which is due to dispersion at the nanoscale of exfoliated clay sheets with large aspect ratio. The bimodal distribution of fiber length is observed in fiber‐reinforced nanocomposites, which is similar to that in conventional fiber‐reinforced composites. The improvement of fiber breakage at moderate organoclay loadings is also observed, which is ascribed to the rheological and lubricating effects induced by organoclay. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
Whereas lignocellulosic fibers have received considerable attention as a reinforcing agent in thermoplastic composites, their applicability to reactive polymer systems remains of considerable interest. The hydroxyl‐rich nature of natural lignocellulosic fibers suggests that they are particularly useful in thermosetting systems such as polyurethanes. To further this concept, urethane composites were prepared using both unused thermomechanical pulp and recycled newsprint fibers. In formulating the materials, the fibers were considered as a pseudo‐reactant, contributing to the network formation. A di‐functional and tri‐functional poly(propylene oxide)‐based polyol were investigated as the synthetic components with a polyol‐miscible isocyanate resin serving as a crosslinking agent. The mechanical properties of the composites were found to depend most strongly on the type of fiber, and specifically the accessibility of hydroxy functionality on the fiber. Dynamic mechanical analysis, swelling behavior, and scanning electron micrographs of failure surfaces all provided evidence of a substantial interphase in the composites that directly impacted performance properties. The functionality of the synthetic polyol further distinguished the behavior of the composite materials. Tri‐functional polyols generally increased strength and stiffness, regardless of fiber type. The data suggest that synthetic polyol functionality and relative accessibility of the internal polymer structure of the fiber wall are dominant factors in determining the extent of interphase development. Considerable opportunity exists to engineer the properties of this material system given the wide range of natural fibers and synthetic polyols available for formulation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 546–555, 2001  相似文献   

12.
以聚苯胺/聚丙烯(PANI/PP)复合纤维为导电相材料,采用非连续密级配制备了PANI/PP复合导电纤维沥青混凝土,采用马歇尔试验法对沥青混凝土的力学性能进行了测试。结果表明:随着PANI/PP复合纤维掺量的增加,PANI/PP复合导电纤维沥青混凝土的稳定度、流值、空隙率均有增大趋势,复合纤维的质量掺量为0.8%时,沥青混凝土稳定度可增加近50%,流值增加100%。复合纤维的质量掺量为0.2%~0.8%时,纤维在沥青混凝土中分散均匀性好。  相似文献   

13.
This paper deals with prediction of the temperature rise in the stress‐controlled fatigue process of a glass‐fiber‐reinforced polyamide and the application of a temperature and frequency superposition procedure to the S‐N curve. An experimental equation was derived to predict the temperature rise from calculations based on the fatigue test conditions and viscoelastic properties of the material. The temperature rise (ΔT) can be expressed as a product of a coefficient term Φ(L, κ) concerning heat radiation and the test‐specimen shape and a function term Pfat concerning the viscoelastic properties and fatigue test conditions. Φ(L, κ) was found experimentally to derive the equation for predicting the temperature rise blow or above the glass transition temperature (Tg) of the material. The equation σR = −STf A log NfR + STf B was obtained as a procedure for applying temperature and frequency superposition to S‐N curves in consideration of ΔT. This procedure was obtained by combining both temperature‐ and frequency‐superposition techniques. Here, σR and log NfR represents the stress and the fatigue lifetime calculated at a given temperature and frequency, A and B denote the slope and intercept of any arbitrarily chosen S‐N curve, and STf is a shift factor for temperature and frequency superposition. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1783–1793, 1999  相似文献   

14.
The creep properties, that is, the velocity constant, activation energy, stress index, and time index, of a test piece (TP) cut from a glass‐fiber‐reinforced nylon 6 product were successfully determined by a compression creep test. In the determination of the creep properties, the experimental creep curves for the TP were fitted by finite element analysis (FEA). Fiber‐reinforced nylon 6 beams with different fiber orientations were also prepared, and their creep properties were successfully determined by a combination of the bending creep test and the corresponding analysis. The creep behavior of the press‐fit component composed of a metal collar and a fiber‐reinforced nylon 6 product was predicted by FEA with the determined creep properties of the TP. The predicted retention forces were in good agreement with the experimental ones. The effects of the fiber orientation on the long‐term reliability of the press‐fit component are also discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
In this study, we aimed to prepare and characterize glass fiber‐reinforced composites (GFRP) based on benzoxazine resins. Therefore, the molten resin from benzoxazine and bisoxazoline with the latent curing agent was used as the matrix resin, and the properties of GFRP based on the molten resins were investigated. The properties of GFRP were estimated by mechanical properties, heat resistance, and flame resistance. As a result, it was found that GFRP based on the molten resins from benzoxazine and bisoxazoline with the latent curing agent showed good heat resistance, flame resistance, and mechanical properties compared with those of the conventional GFRP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Short ramie fiber (RF) was used to reinforce the polypropylene (PP). The composites were prepared in a twin‐screw extruder followed by injection molding. The experimental results showed that both the strength and the modulus of the composites increase considerably with increasing RF content. The tensile strength and flexural strength are as high as 67 and 80 MPa by the incorporation of ramie up to 30 wt %. To the best of our knowledge, this is one of the best results for short natural fiber‐reinforced PP composites. However, the preparation method in this study is more simple and economic. This short RF‐reinforced PP composites extend the application field for short‐nature fiber‐reinforced PP composites. Morphological analysis revealed that it is the high aspect ratio of the fiber and good interfacial compatibility that result in the high performance of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
In this study, the flexural tests were conducted to investigate the effects of temperature, steel fiber, nano‐SiO2, and nano‐CaCO3 on flexural behavior of concrete at high temperatures. The load‐deflection curves of fiber and nanoparticle reinforced concrete (FNRC) were measured both at room and high temperatures. Test results show that the load‐deflection curves become flatter, and the flexural strength, peak deflection, and energy absorption capacity decrease seriously with the increase of temperature. Both steel fiber and nanoparticles could significantly improve the flexural behavior of the concrete at room and high temperatures. The energy absorption capacity of FNRC before the peak point increases with the increase of steel fiber volume fraction. The improvement of nano‐SiO2 on flexural strength of FNRC at high temperature is better than that at room temperature, but the enhancement on energy absorption capacity is reverse. Nano‐SiO2 is more effective than nano‐CaCO3 in improving flexural behavior of concrete both at room and high temperatures.  相似文献   

18.
A series of glass fiber‐reinforced rubber‐toughened nylon 6 composites was prepared. The mechanical properties and morphology of the composites toughened with ABS were investigated and compared with composites toughened with EPR‐g‐MA. A study of the mechanical properties showed that the balance of the impact strength and stiffness for both types of systems can be significantly improved by proper incorporation of glass fibers into toughened nylon 6. The differences between these two types of rubber‐toughened composites are significant at a high rubber content. However, the ductility of both composites toughened with rubber was significantly lower than that of blends without glass fiber. The relationships between rubber content, nylon 6 molecular weight, compatibilizer, processing, and mechanical properties are discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 484–497, 2001  相似文献   

19.
Ning Tian  Aixi Zhou 《火与材料》2016,40(3):396-415
The ignition characteristics of combustible solids are affected by many factors such as material properties, external heating source, and surrounding environmental conditions. In practice, these factors can vary significantly from one application to another. Thus, it is important to evaluate the sensitivity and uncertainty aspects of the effect of these factors on ignition. This study attempts to achieve this goal through sensitivity and uncertainty analyses on the piloted ignition of fiber‐reinforced polymer (FRP) composite panels. A Monte Carlo simulation using the Latin hypercube sampling method was employed to conduct sensitivity and uncertainty analyses. An integral model combining a general thermal thickness model with a heating rate‐related ignition temperature criterion was used as the ignition prediction model. Time‐to‐ignition was evaluated as the output parameter against the variations of input parameters such as material properties, external heating source, and surrounding environmental conditions. In addition, to identifying important sensitivity factors and uncertainty ranges of piloted ignition, a critical thermal thickness was found for the composite panels. These findings can serve as guides for the fire safety design of FRP composite materials for various applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Copolymers of polybenzoxazine (BA‐a) and urethane elastomer (PU) with three different structures of isocyanates [i.e., toluene diisocyanate (TDI), diphenylmethane diisocyanate, and isophorone diisocyanate], were examined. The experimental results reveal that the enhancement in glass transition temperature (Tg) of BA‐a/PU copolymers was clearly observed [i.e., Tg of the BA‐a/PU copolymers in 60 : 40 BA‐a : PU system for all isocyanate types (Tg beyond 230°C) was higher than those of the parent resins (165°C for BA‐a and ?70°C for PU)]. It was reported that the degradation temperature increased from 321°C to about 330°C with increasing urethane content. Furthermore, the flexural strength synergism was found at the BA‐a : PU ratio of 90 : 10 for all types of isocyanates. The effect of urethane prepolymer based on TDI rendered the highest Tg, flexural modulus, and flexural strength of the copolymers among the three isocyanates used. The preferable isocyanate of the binary systems for making high processable carbon fiber composites was based on TDI. The flexural strength of the carbon fiber‐reinforced BA‐a : PU based on TDI at 80 wt % of the fiber in cross‐ply orientation provided relatively high values of about 490 MPa. The flexural modulus slightly decreased from 51 GPa for polybenzoxazine to 48 GPa in the 60 : 40 BA‐a : PU system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号