首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钢丝编织增强氟塑料高压软管广泛应用于航空发动机管路系统,以航空用某型号软管为研究对象,结合数值和试验的方法,研究其疲劳寿命性能。基于压力载荷下软管应变测量和钢丝尺度软管精细化有限元分析得到压力-钢丝应力模型,结合应变载荷谱和钢丝疲劳试验得到的钢丝应力寿命模型,对用于航空发动机外部管路中的聚四氟乙烯软管在脉冲载荷下的寿命进行预测,预测结果略有偏大,主要由于脉冲载荷下软管周向应力较大,且脉冲累计会持续增大周向应力,使软管寿命加速损耗,软管在脉冲载荷下疲劳失效形式以斜口破裂为主,与应力分析得到的断裂平面方向一致。  相似文献   

2.
对 钢丝帘线橡胶复合材料在拉伸循环载荷下的疲劳特性进行了试验研究,分析了最大应力、加载频率对材料疲劳寿命的影响以及疲劳过程中的滞后损失和温升,根据疲劳寿命图得到了线性寿命预报方程。研究表明,在载荷控制下该材料的疲劳过程呈现明显的三阶段规律,两步等幅加载实验证明这一规律同样适用于有损试件的疲劳过程。   相似文献   

3.
对[±20°]钢丝帘线橡胶复合材料在拉伸循环载荷下的疲劳特性进行了试验研究,分析了最大应力、加载频率对材料疲劳寿命的影响以及疲劳过程中的滞后损失和温升,根据疲劳寿命图得到了线性寿命预报方程.研究表明,在载荷控制下该材料的疲劳过程呈现明显的三阶段规律,两步等幅加载实验证明这一规律同样适用于有损试件的疲劳过程.  相似文献   

4.
针对平面编织氧化铝基复合材料提出了一种复杂面内应力状态下的强度准则和疲劳寿命预测方法。通过拉伸、压缩及纯剪切试验,分别获得了材料的静强度指标。考虑材料拉、压性能的差异和面内拉-剪联合作用对材料强度的影响机制,提出了修正的Hoffman强度理论。采用该强度理论预测得到的偏轴拉伸强度与试验结果基本一致,偏差不超过10%。开展了偏轴角θ=0°、15°、30°、45°,应力比R=0.1,频率f=10 Hz的拉伸疲劳试验,试验结果表明随着偏轴角的增加,相同轴向拉伸载荷下的疲劳寿命逐渐降低。由于面内剪切应力分量的作用,疲劳失效由纤维主导逐渐过渡到纤维和基体共同主导的模式。基于单轴疲劳寿命曲线,采用Broutman-Sahu剩余强度模型表征剩余强度随疲劳循环次数的变化规律,结合剩余强度演化模型和修正的Hoffman强度理论,提出了一种面内复杂载荷条件下的疲劳寿命预测模型,并引入疲劳剪切损伤影响因子表征拉-剪应力联合作用对材料疲劳行为的影响。采用本文提出的疲劳寿命预测模型,预测不同偏轴角拉伸疲劳寿命,预测结果与试验结果基本一致,偏差在1倍寿命范围内。比较结果表明在给定应力比、温度和疲劳载荷频率条件下,该疲劳寿命预测模型可以用来预测平面编织氧化铝基复合材料拉-剪复杂面内载荷条件下疲劳寿命。   相似文献   

5.
为解决实际工况中飞机管道疲劳性能问题,研究飞机管道安装应力环境下的疲劳寿命分析方法,首先,建立飞机管道有限元模型;然后,利用有限元软件ANSYS Workbench对不同轴向装配偏差情况下的管道进行模态分析以及谐响应分析;进而,提取出管道危险点应力幅值,利用材料的S-N曲线进行疲劳寿命预测。最后,设计不同安装应力情况下的管道共振疲劳试验,并对仿真结果进行验证。仿真和试验的对比结果表明:根据仿真和试验得到的管道发生断裂的位置一致,两者管道疲劳寿命循环次数契合,随着轴向装配偏差增大,管道疲劳寿命逐渐下降。  相似文献   

6.
在捞油施工作业过程中,某采油厂捞油车钢丝绳突然断裂。采用宏观观察、化学成分分析、金相检验、拉伸试验、整绳破断拉力试验、扫描电镜分析等方法研究了钢丝绳断裂原因。结果表明:钢丝绳钢丝表面存在大量磨损挤压损伤,断裂面呈剪切破坏和扭转-拉伸疲劳破坏形貌特征,断裂面裂纹与轴向夹角呈45°;在使用过程中,钢丝表面磨损挤压处萌生初始裂纹,在扭转-拉伸载荷的作用下,钢丝绳松捻结构被破坏,产生了应力集中,最终导致钢丝绳断裂。  相似文献   

7.
姚思远  陈秀华 《复合材料学报》2018,35(10):2706-2714
为研究三维机织复合材料在拉伸-压缩循环载荷下的疲劳性能,对材料进行了应力比R=-1的疲劳试验。在不同的载荷水平下,分别进行了纬向和经向两类拉压疲劳试验。试验获得了试样在疲劳载荷下的滞回曲线和全过程中剩余刚度比随寿命的变化曲线。结果表明,在拉伸-压缩循环载荷下,三维机织复合材料的疲劳损伤过程主要包含3个阶段,分别发生基体破坏、纱线横向裂纹扩展和纱线的最终断裂。基体的破碎和开胶、垂直于载荷方向排布的纱线撕裂和沿载荷方向排布的纱线断裂是试样内部的主要失效模式。试验还获得了纬向和经向拉压疲劳的拟合S-N曲线,可应用于工程中对该型材料进行疲劳寿命估算。该型材料的疲劳寿命在低应力区和高应力区均显示出较小的分散性,双对数坐标系下的拟合S-N曲线具有较好的线性度。  相似文献   

8.
该文采用应力控制的方式对GH4169焊接接头试件进行疲劳试验,得到了GH4169焊接接头在不同载荷下的寿命。通过对焊接接头疲劳应变幅变化的测量,了解了GH4169焊接接头的疲劳损伤演化过程。该文还对不同载荷下焊接接头宏观损伤演化曲线进行了分析。研究结果可为GH4169焊接结构疲劳寿命预测提供参考。  相似文献   

9.
提出了一种多轴向耦合随机激励下缺口结构振动疲劳寿命预测的频域分析方法。实施了缺口试件的双轴向随机振动疲劳试验,研究了两个振动轴向上载荷谱之间的相干性和相位差对缺口试件疲劳损伤的影响规律;通过随机振动分析计算得到试件缺口根部各节点的应力功率谱密度矩阵,并假设缺口试件裂纹萌生点为历经von Mises应力最大均方根值的节点;缺口试件疲劳临界点可由疲劳裂纹初始点和修正临界距离理论确定;在疲劳临界点处通过Carpinteri-Spagnoli频域准则计算缺口试件的振动疲劳寿命,并与试验结果进行了对比。结果表明:该多轴缺口疲劳预测方法具有较高的预测精度,绝大部分预测结果都在3倍误差带内。  相似文献   

10.
安子乾  舒茂盛  程羽佳  郭鑫  刘小冬  程小全 《材料导报》2021,35(20):20081-20086
带衬套沉头螺栓连接已经在复合材料连接结构中得到了一定的应用,需要对其疲劳性能进行研究.本研究对一种单搭接3钉带衬套碳纤维复合材料/钛合金沉头螺栓连接接头进行了静态拉伸试验,测量了接头的载荷-位移曲线、拉伸极限强度与条件挤压强度.在此基础上,确定67%接头极限载荷为拉伸疲劳最大载荷,按应力比为0.1的循环载荷对接头进行疲劳试验,并与对应的无衬套接头进行了对比,研究了衬套对该接头疲劳性能的影响.结果表明,衬套的引入改善了应力分布情况,使结构疲劳寿命延长了98.4%.同时,静态拉伸试验中发生层合板的钉孔挤压以及净截面拉伸破坏,疲劳试验中发生钛合金板的拉伸疲劳破坏,部分无衬套接头还发生了螺栓疲劳破坏.经分析发现,两类材料的疲劳性能表现差异较大,复合材料/金属机械连接接头的疲劳破坏模式会因载荷水平的不同而发生变化,在低于一定载荷水平下容易出现金属结构的破坏.  相似文献   

11.
为探究镍钛合金血管支架植入下肢动脉后产生断裂失效的原因,对Absolute Pro下肢动脉支架在多级载荷耦合作用下的疲劳性能进行研究。利用有限元方法对镍钛合金支架在一级(生理脉动、轴向拉伸、压缩、弯曲、扭转)、二级(拉-弯、拉-扭、压-弯、压-扭、弯-扭)和三级(拉-弯-扭、压-弯-扭)载荷下分别进行数值模拟,基于应变法评价支架的疲劳强度,采用名义应力法和断裂力学进行疲劳寿命预测。经疲劳性能分析发现,一级载荷和部分多级载荷下的支架疲劳强度均满足10年疲劳寿命的要求,其中二级载荷的拉-弯和三级载荷的拉-弯-扭下最大交变应变大于疲劳极限,易产生应力集中导致疲劳失效;寿命云图和安全系数显示,在一级载荷下,压缩载荷对支架寿命的影响最大,脉动载荷最小,在二级载荷下,拉-弯载荷影响最大,弯-扭载荷影响最小,在三级载荷下拉-弯-扭对支架寿命的影响大于压-弯-扭;基于断裂力学寿命预测发现,初始裂纹的大小对支架的寿命有显著的影响。该研究结果揭示了多级载荷对支架疲劳强度和寿命的影响,为支架的临床断裂失效机理提供理论参考。  相似文献   

12.
进行了不同循环应力下CFRP筋的常温疲劳试验,选取CFRP筋70%的极限拉伸应力作为最大循环应力,在R=0.5(最小循环应力与最大循环应力的比)和R=0的应力率下,测量了CFRP筋的疲劳寿命曲线,研究了CFRP筋的疲劳性能.结果表明:CFRP筋的最大循环应力应控制在70%极限拉伸应力以下;在R=0.5应力率下,最大循环应力下降5%的极限拉伸应力时,CFRP筋的疲劳寿命增长10倍左右;最大循环应力分别为60%和50%极限拉伸应力时,R=0应力率下CFRP筋的疲劳寿命分别为R=0.5应力率下疲劳寿命的百分之一和十分之一.这说明CFRP筋具有很大的脆性,需要有足够的强度安全系数,才能发挥作用;根据试验拟合的疲劳寿命曲线,CFRP筋的疲劳性能远高于Q235光圆钢筋.  相似文献   

13.
超深矿井提升机卷筒在钢丝绳多层缠绕时所受钢丝绳的缠绕力错综复杂,在长期作业过程中卷筒结构可能会萌生裂纹进而发生疲劳破坏,所以有必要对卷筒结构在多层缠绕实际工作条件下的疲劳寿命展开研究。基于板壳理论,将超深矿井提升机卷筒视为均匀受压的旋转对称壳体,通过对卷筒结构负荷构成进行分析,建立了钢丝绳对卷筒作用力的数学模型,并根据提升系统动力学原理建立了钢丝绳满载上提和空载下放的动力学模型,确定了卷筒结构的动态载荷。通过对卷筒结构作业过程强度分析得出卷筒结构在整个工作循环中的应力-时间历程曲线。结合不同存活率的S-N曲线和累积损伤理论,分析了卷筒结构在不同负载下的疲劳寿命。研究结果表明:提升机满载上提和空载下放过程中卷筒结构的最大等效应力均出现在等速阶段,且其最大等效应力出现在卷筒内壁支轮与支环的中部;在给定的存活率下卷筒结构的疲劳寿命与工作负载密切相关。研究结果为多层缠绕复杂工况下卷筒的力学分析与科学设计提供了理论支撑。  相似文献   

14.
通过对航空有机玻璃进行拉伸疲劳试验得到了不同应力水平下的拉伸疲劳S-N曲线以及条件疲劳强度,研究了应力比对有机玻璃拉伸疲劳性能的影响。结果表明:该有机玻璃在应力比为0.4,0.1,-0.1条件下的疲劳强度分别为63.0,57.3,48.4MPa,其对应的拉伸疲劳S-N曲线随着应力比的增加整体上移;在相同应力水平下,应力比越大,该有机玻璃的拉伸疲劳寿命越长。  相似文献   

15.
本文分析计算了双对数坐标下载荷谱线段等效载荷。等效载荷依赖于于这段载荷谱及疲劳寿命曲线的斜率。对于比疲劳寿命曲线更陡的某段载荷谱,等效载荷偏向最大的谱载荷。在这种情况下,最大应力部分对损伤产生较大的影响。误差研究表明,在损伤计算中用阶梯函数代替连续的载荷谱所产生的偏离或误差具有疲劳寿命曲线方程的指数形式。  相似文献   

16.
通过AZ91D室温环境应力控制下的低周疲劳试验,对铸造镁合金棘轮及其低周疲劳行为进行了研究,讨论了室温环境下材料的应力循环特性、棘轮行为、塑性应变范围、全应变范围等疲劳参量随载荷水平和加载历史的变化规律,同时基于平均应力修正对材料的应力-寿命曲线进行了讨论。研究结果表明:AZ91D在室温环境下的应力循环呈循环硬化,材料的棘轮行为和塑性应变范围、全应变范围等疲劳参量依赖于载荷水平和加载历史,另外考虑平均应力修正后的应力-寿命曲线预测效果有明显改观。  相似文献   

17.
为分析单裂纹或多裂纹在裂纹面承受疲劳拉伸载荷作用下尖端应力强度因子变化规律和裂纹形貌变化以及疲劳寿命情况,以含不同初始长深比的半椭圆单裂纹或双裂纹的薄片试样为研究对象,对试样在应力比R=0.1的疲劳拉伸载荷下单裂纹或双裂纹情况进行了仿真分析。建立含裂纹试样的有限元模型,仿真分析了裂纹在扩展过程中尖端应力强度因子的分布情况,并将单裂纹扩展结果与双裂纹相互作用影响下的结果进行了对比研究;进行含裂纹试样的疲劳实验,分析了含单裂纹或双裂纹的试样的断裂面的形成原因,并验证仿真结果正确性。结果表明,裂纹面之间的相互作用会逐渐影响裂纹的扩展方向、扩展速率以及在扩展过程中尖端应力强度因子的变化趋势;而且初始形貌为半椭圆形的双裂纹在相互作用影响下会逐渐过渡到半圆形。  相似文献   

18.
进行变刚度橡胶球铰的承载特性研究,有限元数值分析与实验结果均表明其刚度曲线表现为明显的非线性特性。正常载荷工况刚度值小、平稳,极限载荷刚度曲线出现拐点,刚度值显著增大。改变橡胶球铰的止挡高度,会直接影响刚度曲线的拐点位置。可据载荷工况,通过调整止挡高度改变刚度特性。据橡胶超弹特性,用有限元分析数据计算疲劳载荷工况下球铰危险点的等效应力范围,结合S-N曲线对橡胶球铰的疲劳寿命分析预测,并通过台架疲劳实验验证。结果显示橡胶球铰经150万次疲劳试验后未失效,与寿命预测值基本吻合。  相似文献   

19.
2024铝合金喷丸试件疲劳寿命试验及仿真研究   总被引:2,自引:0,他引:2  
现有的喷丸材料疲劳性能研究扩展有限元模型没有考虑残余应力对裂纹扩展的影响。对2024铝合金的喷丸与未喷丸试样进行三弯疲劳试验,以明确喷丸工艺对试件疲劳寿命的强化作用。通过ABAQUS建立试件的二维平面应力模型,导入残余应力并利用扩展有限元法模拟循环载荷下裂纹的萌生与扩展,对比试验结果来验证该扩展有限元数值模型的正确性。最后基于该数值模型,改变载荷工况,研究不同载荷工况下残余应力对疲劳寿命的影响,得到喷丸残余应力强化作用与载荷工况的关系。结果表明:喷丸引入的残余应力可以有效地增强试件的疲劳寿命;过大的循环载荷可能造成喷丸残余应力发生松弛;在最大载荷不变的前提下,应力比越小,试件疲劳寿命越短;应力比越大,残余应力对疲劳寿命强化效果越明显。  相似文献   

20.
K节点应力集中系数的试验和数值研究方法   总被引:6,自引:0,他引:6  
工程中常用的评价海洋平台中管节点疲劳寿命的方法是使用S-N曲线。当管节点承受疲劳载荷作用的时候,可以通过数值或者试验方法得到沿着焊缝处的热点应力幅的大小。然后通过S-N曲线,可以预测此节点在破坏前可以承受疲劳载荷的循环次数。应力幅的大小可以由应力集中系数这个参数来确定。对K型节点在承受基本载荷作用下的应力集中系数进行了数值和试验分析,得到了各种基本载荷作用下K节点沿着焊缝处应力分布情况和极值应力点的位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号