首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
将曲线轨道视为周期性离散支撑结构,根据周期性结构的振动特性,通过引入移动荷载作用下曲线轨道梁的数学模态以及广义波数,得出曲线轨道梁频域响应的级数表达,进而求解固定谐振荷载作用下曲线轨道梁平面外弯扭耦合振动的响应特性。通过计算不同频率固定谐振荷载作用下曲线轨梁的动力响应,可以求得曲线轨梁垂向位移频响特性。对单层离散点支撑轨道模型进行计算分析可知:曲线轨道梁一阶自振频率受扣件支点垂向支撑刚度、垂向支撑阻尼系数、扣件支点间距变化影响较大,扣件支点垂向支撑刚度增加时轨梁一阶自振频率提高,垂向支撑阻尼系数增加时轨梁一阶自振频率略有减少,扣件支点间距减小时轨梁一阶自振频率提高;扣件支点间距对曲线轨梁频响特性具有显著的影响,跨中处一阶pinned-pinned共振峰幅值及支点处反共振峰幅值随支点间距的增加而变大;曲线半径对地铁轨道轨梁垂向位移频响特性几乎没有影响。  相似文献   

2.
将曲线轨道视为周期性离散支撑结构,根据周期性结构的振动特性,通过引入移动荷载作用下曲线轨道梁的数学模态以及广义波数,得出曲线轨道梁频域响应的级数表达,进而求解固定谐振荷载作用下曲线轨道梁平面外弯扭耦合振动的响应特性。通过计算不同频率固定谐振荷载作用下曲线轨梁的动力响应,可以求得曲线轨梁垂向位移频响特性。对单层离散点支撑轨道模型进行计算分析可知:曲线轨道梁一阶自振频率受扣件支点垂向支撑刚度、垂向支撑阻尼系数、扣件支点间距变化影响较大,扣件支点垂向支撑刚度增加时轨梁一阶自振频率提高,垂向支撑阻尼系数增加时轨梁一阶自振频率略有减少,扣件支点间距减小时轨梁一阶自振频率提高;扣件支点间距对曲线轨梁频响特性具有显著的影响,跨中处一阶pinned-pinned共振峰幅值及支点处反共振峰幅值随支点间距的增加而变大;曲线半径对地铁轨道轨梁垂向位移频响特性几乎没有影响。  相似文献   

3.
将曲线轨道视作周期性轨道结构,根据周期性结构的振动特性,可将荷载作用下曲线轨道钢轨动力响应的求解问题转化在一个基本元之内进行。通过引入移动谐振荷载作用下曲线轨道钢轨的数学模态,得出了曲线轨道钢轨频域响应的级数表达。在频域内采用模态叠加法表示钢轨的弯曲及扭转变形,进而求解得出钢轨的频域动力响应。经研究发现:移动荷载作用下曲线轨道钢轨响应显著的频段位于荷载激励频率附近,随着荷载移动速度的增加,荷载激励频率附近一个很窄频段内的位移响应将有所减小,但其它大部分频段内的位移响应将显著增大;随着荷载移动速度的增加,移动谐振荷载引起的钢轨响应峰值变化不大,但响应显著的持续时间变短;离散支承引起的参数激励受速度的影响显著;采用曲线梁模型模拟曲线轨道钢轨所得垂向动力响应结果与直梁模型基本一致,可以采用直梁模型近似研究曲线轨道钢轨垂向动力响应;当对曲线轨道钢轨进行精细化建模分析时,曲线半径对曲线钢轨扭转振动有一定程度的影响,需采用曲梁模型研究曲线轨道钢轨动力响应。  相似文献   

4.
建立曲线轨道解析模型,研究扣件刚度、扣件阻尼、扣件间距以及曲线轨道半径对钢轨振动衰减率的影响规律。轨道模型考虑为具有周期性离散支承的曲线Timoshenko梁,在频域内,将曲线钢轨的位移及转角表达为轨道模态的叠加,进而求解固定谐振荷载作用下曲线轨道的平面内和平面外动力响应。由于此轨道模型为无限周期性结构,将周期性结构理论应用于轨道模型的运动方程,可以在一个基本元内高效地求解轨道的动力响应。利用此模型计算固定谐振荷载作用下曲线钢轨的速度频响函数,据此计算钢轨的振动衰减率。经计算分析可知:在2 000 Hz以内,扣件刚度对钢轨振动衰减率有一定的影响,随着扣件刚度的增加,钢轨振动衰减率增大;对于100 Hz以上频段,扣件阻尼对钢轨振动衰减率有非常显著的影响,增加扣件阻尼可以显著提高钢轨振动衰减率;如果考虑全频段的钢轨振动衰减率,0.6 m扣件间距要优于0.4 m和0.8 m扣件间距;对于铁路轨道或城市轨道交通的轨道,曲线轨道半径变化对钢轨振动衰减率没有影响。  相似文献   

5.
建立垂向安装有具有两阶自振频率的调频式钢轨阻尼器(Tuned Rail Damper,TRD)的曲线轨道频域解析模型。将此曲线轨道视为离散支承的无限周期结构,引入周期无限结构理论,结合频域模态叠加法,通过求解轨道某“基本元”内一点的动力响应,进而得到安装有TRD的曲线轨道上任意位置处的动力响应。对安装TRD的曲线轨道动力特性进行计算分析可知:TRD能够显著降低曲线轨道在TRD自振频率附近频段内的振动响应并有效抑制曲线轨道的pinned‑pinned共振;安装TRD后,曲线轨道钢轨振动衰减率明显增大;TRD对不同半径曲线轨道的动力响应均具有一定的抑制作用;移动谐振荷载作用下,当荷载激振频率大于轨道自振频率时,安装TRD的曲线轨道时域振动响应被不同程度地抑制,当荷载激振频率与TRD自振频率一致时,轨道的振动响应显著降低。  相似文献   

6.
建立曲线轨道解析模型,此轨道模型考虑为具有周期性离散弹簧-阻尼支承的曲线Timoshenko梁。在频域内将曲线钢轨的位移及转角表达为轨道模态的叠加,并将周期性结构理论施加于轨道模型的运动方程,进而在一个基本单元内高效地求解轨道的动力响应。将横向固定谐振荷载作用于钢轨轨头,考虑不同扣件刚度、扣件阻尼、扣件间距及曲线半径,研究上述轨道参数对曲线轨道位移响应的影响。经计算分析可知:钢轨轨头的横向位移响应包括平面内和平面外的位移响应,是钢轨平移和扭转效应的叠加;增加扣件刚度或减小扣件间距可导致轨道系统一阶自振的频率增大,而其幅值减小,对于一阶自振频率以下的频段,钢轨位移幅值也有所减小;随着扣件阻尼的增大,一阶自振的幅值显著下降,对于pinned-pinned共振,随着扣件阻尼的增加,跨中处的钢轨位移增大,而扣件上方的位移有所减小;pinned-pinned共振频率随着扣件间距的增大而减小,而其位移幅值增大;对于曲线地铁轨道,曲线半径对钢轨的横向位移基本没有影响,但对竖向位移影响显著,随着曲线半径的增加,钢轨竖向位移幅值显著下降。  相似文献   

7.
轨道结构的固有特性不因车辆系统及列车运营状态的变化而变化,可通过轨道的振动动态频响测试来辨识系统的传递特性和特征参数。基于国内某地铁正常运行的350 m小半径曲线线路,测试双层非线性减振扣件、III型轨道减振器扣件及DTVI2减振扣件等3种轨道结构线路在正常列车运营条件下钢轨动态振动响应及对应线路钢轨波磨水平,得到频率大于400 Hz时III型轨道减振器扣件及双层非线性扣件的钢轨横向振动大于垂向振动。结合线路钢轨波浪磨耗的特征,在车速65 km/h下中等减振扣件(双层非线性扣件与III型轨道减振器扣件)钢轨波磨多集中在50mm~80 mm短波长,分析得到III型轨道减振器扣件及双层非线性扣件的钢轨横向动态振动频响峰值与其钢轨波浪磨耗激励的200 Hz~400 Hz频率范围基本吻合,初步得到区段钢轨波磨形成和发展的影响因素。同时,采用锤击方法对比3种扣件轨道结构型式下轨道的振动衰减率及阻尼特性,综合结果发现双层非线性减振扣件相对于其他两种扣件轨道结构型式特别在400 Hz~630 Hz频段范围对钢轨的横向振动有较好的抑制作用。  相似文献   

8.
移动谐振荷载作用下浮置板轨道的动力响应   总被引:1,自引:0,他引:1  
马龙祥  刘维宁  刘卫丰 《工程力学》2012,29(12):334-341
在移动谐振荷载作用下,依据周期结构响应的性质,将无限长浮置板轨道响应的问题求解转化到在一块浮置板长度范围内进行,并通过浮置板的位移影响矩阵在频域内实现了钢轨和不连续浮置板的耦合,求得了该范围内钢轨的动力响应,进而以此为基础求得了轨道结构上任意一点的动力响应。结果表明:移动谐振荷载作用下,在移动荷载自身激振频率附近,浮置板轨道位移响应频谱达到峰值;随着移动谐振荷载速度的增大,在频谱上,荷载自身激振频率附近很窄的频段位移响应会有所下降,而在其他大部分频段位移响应会有显著增加;当谐振荷载激振频率与浮置板轨道的固有频率一致时,发生共振现象,在频谱上位移响应的峰值远远大于其他激振频率时响应的峰值;浮置板轨道在移动荷载作用下,存在由荷载周期通过不连续浮置板和扣件而引发的参数激励;当移动谐振荷载激振频率接近有限长浮置板形成驻波的频率时,轨道结构也会产生较大的位移响应。  相似文献   

9.
将钢轨视为Euler 曲梁,将钢轨扣件视为弹簧-阻尼器单元,利用振型叠加法和龙格-库塔数值方法计算得到移动荷载作用下整体式曲线轨道的响应特征。研究表明,在现有列车速度下,竖向挠度随着列车速度的增加而增加,增加幅度与曲线半径有关。扭转位移随列车速度增加降至零后基本不变,径向挠度则先降为零后快速增大,存在一个理想车速。当曲线半径小于轨道最小半径要求时,增加曲线半径可以减少曲梁挠度的大小,当满足最小半径后,继续增大曲线半径反而会增大扭转位移和径向挠度。超高角改变对曲梁的竖向挠度影响不大,但对径向挠度或扭转位移有重要影响,增加曲线半径可以减少径向挠度为零时对应的超高角值。在列车速度一定时,合理匹配曲线半径和超高角可以达到减少曲线轨道振动响应的目的。  相似文献   

10.
轨道结构在移动荷载作用下的周期解析解   总被引:10,自引:1,他引:10  
刘维宁  张昀青 《工程力学》2004,21(5):100-102,93
为研究列车振动在地表的传播规律,推导了轨道结构在移动荷载作用下动力响应的解析解形式。文中首先以Duhamel积分为基础,应用动力互等定理,得到了移动荷载作用下,半无限弹性空间体上任意点的动力响应的一般表达式;然后在该式的基础上,针对轨道结构的周期性特点,将荷载沿钢轨的移动问题转化为拾振点以L为周期向反方向跳跃式移动与荷载只在一个轨枕间距L内移动的组合移动问题。以此,将一个从-∞到+∞的积分问题转化为了任意点频域周期解析的叠加问题,从而得到了轨道结构在移动荷载作用下动力响应的新的解析解形式。  相似文献   

11.
地铁线路轨道中高频动态特性对轮轨振动噪声和钢轨短波长波磨的产生有重要作用。建立地铁整体道床轨道的三维实体有限元模型,结合现场力锤敲击法测试结果,计算分析地铁轨道的中高频动态特性,分析扣件刚度、轮对载荷对轨道中高频动态特性的影响。研究结果表明:普通扣件(垂向静态刚度约40 k N/mm)-整体轨道结构在150 Hz以下低频模态表现为轨道板和钢轨整体的垂向弯曲振动,在150 Hz~1 500 Hz中高频模态表现为钢轨相对于轨道板的弯曲振动、轨道板单独的弯曲振动和钢轨局部的扭转振动;扣件垂向刚度在10 k N/mm~40 k N/mm范围内变化对频率在750 Hz以下钢轨垂向动态特性有影响,对钢轨750 Hz以上的中高频模态振型影响不明显;轮对模态在1 500 Hz以下主要表现为弯曲和扭转振动,其对轨道的低频模态振型(钢轨和轨道板整体垂向弯曲振动)影响不明显,对轨道部分中高频模态(钢轨的垂向弯曲振动)影响明显。在400 Hz~1 100 Hz频率范围内,考虑轮对影响的轨道垂向模态频率增大,增大范围为10 Hz~56 Hz。  相似文献   

12.
基于车辆-轨道耦合动力学理论和声学理论,建立了考虑扣件刚度频变特性的轮轨滚动噪声频域分析模型。模型中,通过车轮有限元分析获得其模态特征向量,建立考虑车轮弹性的动力学方程;钢轨视为由刚度随频率变化的扣件离散支承的铁摩辛柯梁模型;通过等效线性化轮轨接触形成轮轨耦合动力学频域分析模型;将轨道粗糙度作为输入并考虑接触区滤波,计算得到了车轮和钢轨的振动响应频谱及声辐射功率频谱,并分析了扣件刚度频变特性对轮轨垂向振动以及轮轨滚动噪声的影响。结果表明,扣件刚度的频变特性对钢轨导纳特性、轮轨相互作用力频谱、钢轨总声功率影响明显,而对车轮总声功率影响较小;与扣件常刚度模型计算结果相比,钢轨振动沿纵向传播的衰减率增大,钢轨声辐射功率在100~1 250 Hz频段明显减小,轮轨总辐射声功率约减小2.4 dBA,轮轨噪声辐射声压预测值与试验结果对比表明,频变刚度模型可有效修正常刚度系数模型对轮轨噪声的过高估计。  相似文献   

13.
以某地铁公司现用的谐振式浮轨扣件为研究对象,介绍谐振式浮轨扣件的结构及其谐振系统的设计原理,建立谐振式浮轨扣件的仿真分析模型,得到谐振式浮轨扣件系统垂向刚度及扭转刚度分别为5.49 kN/mm、0.102MN·m/rad。结合谐振式浮轨扣件的性能特点以及在实际使用中的谐振效果,通过锤击频响试验与仿真,得到3个谐振质量块同时作用的谐振频率分别342 Hz、598 Hz、779 Hz,并与DTVI2扣件的试验测得数据对比,发现在这些频率段下谐振式浮轨扣件的钢轨垂向振动明显减弱。最后针对谐振式浮轨扣件实际应用中轨脚容易扭转摆动的问题,在现有结构的基础上在轨脚增加限位块,保证钢轨轨脚的刚度,降低因车轮与钢轨发生侧向滑移磨损加剧轮轨振动从而诱发波磨的可能。  相似文献   

14.
肖斌  高超  李勇 《振动与冲击》2014,33(5):64-69
针对柴油机隔振非线性系统,提出基于Hammerstein模型的曲线拟合方法,研究系统非线性对其振动特性的影响,并在模态试验基础上获得线性结构动力特征。基于Hammerstein模型建立广义频响函数,考虑基频谐振广义频响函数对基频响应的作用,提取系统(1阶广义)频响函数。曲线拟合技术对(1阶广义)频响函数进行频域估计,识别出线性结构动力特征。模态参数辨识试验结果表明,提出的方法对于柴油机隔振非线性系统的线性模态参数估计是合理、有效的。基于Hammerstein模型的曲线拟合,能够消除系统非线性对振动特性影响,并能够获得系统的线性结构动力特征。  相似文献   

15.
针对轨道不平顺条件下高速客运专线桥上CRTSII型板式轨道的振动特性进行现场实测,对轮轨力、轨道结构的振动响应进行时域和频域的对比分析。结果表明:在轨道不平顺等影响因素作用下,上、下行方向列车以相近的速度运行时对轨道结构产生的冲击作用也相近。钢轨的振动主要由于轮轨表面不平顺激励所产生。在轮轨相互作用下产生的高频振动主要集中在钢轨上,而由于扣件系统的弹性减振作用,轨面不平顺引起的高频振动在轨道板和桥面板上体现不明显,由离散支撑导致的中频振动占据主要成分。列车荷载作用下,振动在轨道结构纵向传递主要在钢轨内部实现的。  相似文献   

16.
为研究无砟轨道钢轨的振动特性,以1 m长P60标准钢轨为研究对象,采用脉冲锤击激励法在实验室内进行试验。通过测量力响应及加速度响应,及运用DASP软件分析得出钢轨导纳(传递函数)的频响数据,计算得出钢轨在不同位置激励时跨中各拾振点的加速度导纳频响图。实验结果给出钢轨跨中截面轨顶、轨头侧面、轨腰、轨底各位置在10 000 Hz以下的振动特性。对不同位置激励时,跨中轨腰处振动响应受力的影响从跨中到两端效果逐渐减弱。轨道导纳分析是噪声分析的基础,有助于探明轨道噪声源产生的主要位置及其产生机理。该结果为无砟轨道钢轨的高频振动导纳特性的理论分析及其减振降噪频域范围和发声源位置的确定提供实验依据。  相似文献   

17.
为了研究列车进出站对周围环境的振动影响,推导了轨道结构在变速移动荷载作用下动力响应的解析解形式。首先以Duhamel积分为基础,应用动力互等定理,得到了变速移动荷载作用下,半无限弹性空间体上任意点动力响应的一般表达式;然后在该式的基础上,针对轨道结构的周期性特点,将荷载沿钢轨的移动问题转化为拾振点以轨枕间距为周期向反方...  相似文献   

18.
列车进出站的振动及噪声问题不容忽视,然而目前关于列车变速移动问题的研究相对较少。为了研究进出站列车对周围环境的振动影响,在轨道结构频域周期性解析模型基础上,求解了单个及系列移动质量、移动质量系统变速移动下轨道结构的动力响应。通过求解变速移动质量下简支梁的动力响应,与已有算例进行对比,验证了计算模型的正确性。研究结果表明:移动质量作用下轨道动力响应远大于移动力作用下的动力响应;由于移动质量和轨道结构间的相互作用,轨道的动力响应中包含了较多的振荡成分;随着移动加速度的增大,轨道动力响应略有增大。  相似文献   

19.
浮置板轨道参数激励振动研究   总被引:2,自引:0,他引:2  
浮置板轨道结构中,浮置板布置的周期性和不连续性导致轨道刚度的周期性变化。车辆行驶在浮置板轨道上时,轨道刚度的周期性变化会引起参数激励振动。为了研究该问题,将钢轨和浮置板视为模态梁,钢轨扣件和隔振器视为线性弹簧-阻尼器;车辆采用相邻车厢距离最近的两台转向架模型,建立了车辆-浮置板轨道耦合动力学模型。应用该模型分析了浮置板轨道参数激励振动的形成机理及影响因素,提出了减小参数激励振动的控制措施。计算结果表明:振动的频率成分主要为车轮通过浮置板的频率及其倍频;轮轨作用力随着车辆速度的提高而增加,随着隔振固有频率的减小而增加;调整浮置板下隔振器的位置和刚度可以降低参数激励振动引起的轮轨作用力。  相似文献   

20.
轨下扣件支承失效对轨道结构动力性能的影响   总被引:1,自引:0,他引:1  
通过建立连续弹性离散点支承上Timoshenko梁的钢轨模型,运用车辆-轨道耦合动力学理论,模拟计算了室内模型轨道轨下支承失效状态下轮轨系统动力响应,分析了列车运行速度与扣件失效数量对轨道结构动力性能的影响,并进行了时域与频域内的试验分析与验证.结果表明:轨下扣件失效破坏了轨道结构支承的连续性,轮轨间相互作用增强,并随其失效数量的增加与列车运行速度的提高而显著增大;同时,扣件支承失效将影响其前后毗邻的正常轨道结构的动态特性,形成较长范围内线路不平顺,影响车辆运行平稳性与乘坐舒适度.钢轨频响函数测试表明,由于扣件支承失效改变了该区段轨枕间距与轨下支承刚度,削弱了道床对线路所提供的阻尼,轨道结构的动力性能也产生了显著变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号