首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
63Ni是核电厂液态流出物中排放量较大的核素,在排放的裂变产物和活化产物中占比在10%以上,但我国核电厂目前对液态流出物中的63Ni没有开展监测,没有相关监测数据的积累。本文在核电厂排放的63Ni的来源分析及国外压水堆核电厂排放统计参考值调研的基础上,对63Ni排放的剂量评估和测量方法进行了分析研究,并提出我国核电厂开展液态流出物中63Ni监测的建议。  相似文献   

2.
本文通过系统调研,以Ni特效树脂为63Ni分离富集材料、低本底液闪谱仪为测量仪器,经过大量条件实验进行方法优化,建立了一套核电站液态流出物中63Ni的快速分析方法。本方法取样量小,6个平行样品的化学回收率为(93.2±3.6)%,放化回收率为(92.1±2.8)%,探测限为67.4 mBq/L,对干扰核素去污因子高,其中对Fe、Co、Zn、Mn的去污因子分别为102、104、102及104,分析周期短(约9 h):同时使用建立的方法进行了液态流出物样品的分析,证明本方法可应用于核电站液态流出物的快速监测,并发现不同类型反应堆运行时液态流出物中63Ni的浓度可能会存在较大差异。  相似文献   

3.
^(55)Fe和^(63)Ni的测量对核电厂液态流出物的排放监测具有十分重要的意义。本工作建立了一种核电厂液态流出物样品中^(55)Fe和^(63)Ni的联合分析方法,通过氢氧化铁和氢氧化镍沉淀富集^(55)Fe和^(63)Ni,再以TRU树脂和镍树脂分离^(55)Fe和^(63)Ni,用低本底液体闪烁谱仪进行测量,并对相关测量条件进行分析研究。当样品用量为1.0 L、测量时间为60 min时,该方法对^(55)Fe的探测下限为0.06 Bq/L,对^(63)Ni的探测下限为0.02 Bq/L,满足核电厂液态流出物中^(55)Fe和^(63)Ni的分析要求。  相似文献   

4.
本文调研分析压水堆核电厂液态流出物中排放55Fe的来源、排放的统计参考值和55Fe的分析方法,提出开展核电厂液态流出物中55Fe监测的建议。统计分析了美国41座压水堆核电厂在2005~2017年液态流出物中55Fe的排放量,其发电量归一化排放量的几何平均值范围为5.18×10-6~8.14×10-5 GBq/GWh,所有压水堆电厂液态流出物中55Fe排放量的几何平均值为1.52×10-5 GBq/GWh,各年度55Fe排放量在液态流出物中占比在12%以上,排第1至第4位。根据我国典型压水堆核电厂液态流出物排放体积,估算了液态流出物中55Fe的排放浓度,约10.7 Bq/L。建议推进核电厂液态流出物中55Fe监测方法的建立和完善。通过对55Fe监测方法的调研,推荐采用固相萃取树脂的快速分析方法。  相似文献   

5.
为明确63Ni在低中放废物处置场下伏地层包气带中的吸附能力以及迁移规律,本文建立了一种包气带土壤中63Ni的快速分析方法:包气带土壤样品在300℃灰化3 h后,用9 mol/L HCl浸取处理,处理后的样品采用2次丁二酮肟沉淀分离纯化63Ni,纯化后的63Ni用液体闪烁计数器测量。结果表明:镍的平均化学回收率为(97.6±2.4)%,0.5 g土壤样品测量1 h检测限为0.18 Bq/g,对60Co、65Zn、54Mn、55Fe等潜在干扰核素的去污因子均大于10~3,2 h可完成放化分离过程。用加标样品对分析方法进行验证,结果表明,预期值和测量值的相对偏差小于±3%。  相似文献   

6.
张利峰  张磊  夏玉倩 《同位素》2018,31(2):110-113
为解决因63Ni源的β射线能量低,使强63Ni源活度难以直接测量的问题,依据放射性物质活度和质量的关系,利用称重法对化学镀镍工艺制备的强63Ni源活度进行间接测量。结果显示,不同编号的63Ni镀层质量为0.92~2.16 mg,根据63Ni比活度、镀层中Ni含量计算对应镀层活度为4.1×108~9.6×108 Bq。考虑天平、Ni含量分析的系统误差,该活度数据的可靠性较高。  相似文献   

7.
本文介绍了核电厂液态流出物中63Ni的分析方法,包括液态流出物的前处理方法、63Ni的分离方法和测量方法,并对63Ni的分析流程进行了比较和分析,提出了目前最优化的核电厂液态流出物中63Ni的测定方法。  相似文献   

8.
微型核电池是目前航天器仪器、设备理想的电源。63Ni是镍电池的核心工作物质。通过在反应堆中辐照高丰度的稳定同位素62Ni,能产生放射性同位素63Ni。为保证62Ni的丰度达到要求,本文开展了62Ni同位素的分离制备研究,进行了磁场及束流输运计算,对离子源及接收器口袋进行了改进设计,制定了电磁分离法分离高丰度62Ni的工艺流程。利用现有的电磁同位素分离器,开展了用电磁分离法分离高丰度、高纯度62Ni稳定同位素的实验,最终获得了丰度≥90%的62Ni同位素。  相似文献   

9.
研究分析了压水堆核电厂中14C的产生途径与排放量,调研了美国和欧洲运行压水堆核电厂气态流出物和液态流出物中14C的排放水平,分析了我国国家标准《核动力厂环境辐射防护规定》(GB 6249—2011)对美国和欧洲运行压水堆核电厂流出物排放14C的包络性,同时分析了多堆厂址、AP1000和EPR等新堆型电厂的运行需求对目前标准规定的14C排放限值管理带来的挑战,提出了14C的减排和资源化利用建议。  相似文献   

10.
《辐射防护通讯》2017,37(3):28-30
国家标准《核电厂放射性液态流出物排放技术要求》中要求滨海核电厂除3H、14C外其他放射性核素总排放浓度上限值为1 000 Bq/L,而为有效防止和控制核电厂放射性液态流出物的异常排放,要求在线监测仪表联锁报警阈值应不超过排放浓度控制值的5倍。但标准就在线监测的报警阈值的具体设定流程和注意事项并未做详细说明,本文将结合实际工作中遇到的问题,对此问题进行探讨。     相似文献   

11.
建立了一种核电厂放射性废离子交换树脂中^(55)Fe和^(63)Ni的联合分析方法。将废树脂样品经芬顿氧化消解后,先用氢氧化钠沉淀法沉淀^(55)Fe和^(63)Ni,再用阴离子交换树脂联合丁二酮肟沉淀对杂质离子进行分离纯化,纯化后用液体闪烁计器测量。本方法对废树脂中^(60)Co、^(65)Zn、^(54)Mn等干扰核素的去污因子均大于10^(3)。本方法对^(55)Fe和^(63)Ni的平均化学回收率分别为86%和90%,对废树脂中^(55)Fe和^(63)Ni的检测限分别为5.7 Bq/g、6.8 Bq/g。用加标样品对分析方法进行验证,预期值和测量值的偏差小于±10%。实验测得某核电厂一组一回路实际废树脂样品中^(55)Fe和^(63)Ni的平均活度浓度分别为(76.2±1.4)kBq/g和(120.0±5.1)kBq/g。  相似文献   

12.
mA量级直流恒流电源具有过保护电压较低的缺点,不适于制作大面积、高活度63Ni放射源。本文以正脉冲电源为解决方案,系统研究在简单组分的镀镍溶液中,各工艺条件对电镀结果的影响。研究结果表明,在阴极电流密度为18 mA/cm2、室温、脉宽80%、频率5 kHz条件下电镀2.5 h,可获得95%以上的58Ni沉积率。  相似文献   

13.
为建立堆芯混凝土材料中~(63)Ni活度测量的方法,进行了溶样方法的确定、淋洗曲线的绘制、液闪测量效率的确定、回收率实验、去污实验及空白实验等方面的研究工作。混凝土样品磨至粒径小于0.074mm,用混合酸(V(HNO_3)∶V(HClO_4)∶V(HF)=3∶2∶1)进行溶解,再通过阴离子交换分离、氢氧化物沉淀及萃取和反萃等样品纯化程序去除杂质离子后,用液体闪烁能谱仪测量其中~(63)Ni的活度。该方法的化学回收率为73.05%,放化回收率为71.99%,通过空白实验得出计数的标准偏差为0.200/s,相对标准偏差为12.8%(n=12),方法检出限为3.596Bq/g。该方法可应用于堆内混凝土材料及非堆材料中63 Ni的常规监测及应急监测。  相似文献   

14.
离子迁移谱技术是现场快速检测化学战剂的有效手段,63Ni毒剂报警源是离子迁移谱技术常用的离子化源。为进行63Ni毒剂报警源的制备,设计活度测量和电镀装置,优化电镀参数,并进行平行性实验和牢固性测试。结果表明,最佳电镀条件为温度20 ℃、电流密度20 mA/cm2、pH 2~3、电镀时间10 min;平行性实验和牢固性测试显示,该方法制备的放射源一次电镀合格率达100%,镀层和镍片结合牢固。该方法制备的放射源满足离子迁移谱技术对离子化源的需求。  相似文献   

15.
基于湿法氧化法对核电厂产生的放射性废树脂进行前处理,建立了树脂中3H和14C的测量方法,分析了影响方法回收率的因素,并对国内某核电厂废树脂中的3H和14C进行了测量。结果表明,H2O2浓度对方法回收率影响最大,在最优的氧化条件下,方法回收率达96.8%;3H和14C最小可探测比活度分别为41 Bq/g和1.3 Bq/g;14C测量结果与《生物样品中14C的分析方法 氧弹燃烧法》(GB/T 37865-2019)的测量结果相比,无显著性差异,14C测量精密度为10.2%。对国内某核电厂废树脂进行测量,3H和14C的平均比活度分别为(6 134 ±640) Bq/g和(2 724±147) Bq/g。  相似文献   

16.
64Cu是目前应用十分广泛的放射性核素,主要用于PET诊断。本文基于C30加速器对64Cu核素的制备工艺进行研究。制靶靶片为金属铜材质,在靶片表面镀金膜,以保护铜基底。镀金完成后用HCl和H2O2浸泡镀金层以去除金属杂质,用脉冲电镀法电镀富集64Ni层。将靶片转移至C30加速器固体靶站进行辐照,束流能量为15.5 MeV。将辐照后的靶片转移至分离纯化热室。在溶靶槽中加入6 mol/L HCl和30%H2O2溶靶,使用AG1-X8阴离子交换树脂分离纯化,最终获得64Cu核素。分别测定64Cu的放射性核纯度、放射化学纯度、金属杂质含量等质量指标。待收集的64Ni溶液衰变完全后,使用AG1-X8树脂回收。检验结果显示,富集64Ni厚度约8.5~16.3 mg/cm2,64Cu产能大于37 GBq,产额可达180~250 MBq/(μA·h),放射性核纯度大于99.9%,放射化学纯度大于97.0%,金属杂质含量均小于0.5 μg/GBq。64Cu制备工艺稳定、质量可控,达到了规模化生产水平,为64Cu相关药物的研究与开发提供了稳定可靠的核素来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号