共查询到17条相似文献,搜索用时 78 毫秒
1.
复杂工况下滚动轴承振动信号通常表现出强烈的非平稳性,而一些典型的故障特征往往容易被其他成分所掩盖,这为故障特征提取带来了很大的困难。针对这一问题,首先,提出一种基于同步压缩小波变换的滚动轴承信号特征提取方法,对多种工况下的滚动轴承振动信号进行分析,提取出能够有效反映滚动轴承工况的信号特征空间;其次,采用非负矩阵分解对信号特征空间进行精简和优化,提炼出用于滚动轴承故障诊断和模式识别的特征参数;最后,采用支持向量机对多种工况的滚动轴承振动信号进行分类。研究结果表明,与传统的时域特征参数提取方法相比,所提出的方法具有更高的分类准确率。 相似文献
2.
利用滚动轴承运行时的异常声响来识别轴承故障,搭建了轴承声阵列信号故障诊断实验平台。针对轴承声信号信噪比差、成分复杂、故障特征不明显的特点,提出一种基于稀疏分解的轴承传声器阵列信号特征提取方法。利用全息面有效声压场及其投影图对实验设备进行噪声源识别与定位,通过coif4小波字典和局部余弦字典构建冗余字典,采用稀疏分解提取热点噪声源声信号的冲击特征。仿真和实际声信号的处理结果表明,该方法准确提取了不同转速下声信号中的故障特征频率,证明了利用声阵列信号对轴承进行故障识别的有效性和可靠性。 相似文献
3.
4.
基于小波包的滚动轴承故障特征提取 总被引:7,自引:0,他引:7
在深入分析离散小波包变换快速算法的基础上,给出了离散小波包变换快速算法中产生频率混淆的原因,即由正交镜像滤波器的非理想截止特必, 隔点采样和隔点插零的特性共同作用产生的,提出了一种消除频率混淆的算法,利用该算法和原算法,分别对某型滚动轴承内环剥落故障的振动信号进行处理,提取其故障特征,结果表明,原算法由于存在频率混淆,可能掩盖故障特征,提出的新算法,由于很好地消除了频率混淆,能有效地提取滚动轴承局部故障的特征。 相似文献
5.
针对滚动轴承特征频率提取问题,提出自适应部分集成局部特征尺度分解(adaptive partly-ensemble local charact-eristic-scale decomposition,简称APLCD)与小波包变换(wavelet package transform,简称WPT)结合的APLCD-WPT方法。首先,利用APLCD对滚动轴承振动信号进行处理,通过添加幅值随频率变化的噪声改善信号极值点分布,再提取内禀尺度分量(intrinsic mode component,简称ISC);其次,对ISC分量中模态混淆部分使用WPT进行修正,提取滚动轴承特征频率信号。应用提出方法对实测的卧式螺旋离心机振动信号进行研究,结果表明,基于APLCD-WPT的算法能够有效地解决模态混淆问题,实现特征频率信号的精确提取。 相似文献
6.
为实现对滚动轴承振动信号中特征频率成分的精确提取,提出了将互补总体平均经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)与小波包变换(wavelet package transform,简称WPT)相结合即CEMMD-WPT特征信号提取算法。两种方法的结合既有效解决了CEEMD分解后依然存在的模态混叠问题,又消除了进行WPT处理后产生虚假频率分量、频率混淆现象的影响。通过仿真试验验证了该方法的有效性,并应用于实际,取得很好的结果。 相似文献
7.
8.
对轴承故障信号进行3层小波包分解,重构第3层所有节点,提取重构信号频谱的峰值作为故障特征点并构成特征空间,计算特征空间的平均欧氏距离,平均欧氏距离最小时对应的节点即为最优小波包节点,重构最优节点得到最优重构信号并从中提取特征点构成最优特征空间,最后,对最优特征空间进行K均值聚类。对4种转速下轴承的4种状态进行特征提取与模式识别试验,结果表明,运用该方法能有效提取轴承故障的特征,并使故障特征空间具有最低的类内离散度,获得了较高的模式识别准确率。 相似文献
9.
10.
11.
基于奇异值分解和局域均值分解的滚动轴承故障特征提取方法 总被引:4,自引:1,他引:4
针对随机噪声干扰滚动轴承故障特征信号提取这一问题,提出一种基于奇异值分解(Singular value decomposition,SVD)滤波降噪与局域均值分解(Local mean decomposition,LMD)相结合的故障特征提取方法。该方法首先对原始振动信号在相空间重构Hankel矩阵并利用SVD方法进行降噪处理,再对降噪后的信号进行LMD分解,将多分量的调制信号分解成一系列生产函数(Product function,PF)之和,最后结合共振解调技术对PF分量进行包络谱分析提取故障特征频率。通过数值仿真和实际轴承故障数据的分析对比,表明该方法提高了LMD的分解能力,可有效辨别出滚动轴承实测信号的典型故障,提高滚动轴承故障的诊断效果。 相似文献
12.
基于双谱分析的滚动轴承故障模式识别 总被引:2,自引:1,他引:2
当滚动轴承发生故障时,其产生的振动信号一般是包含较强噪声的非高斯和非线性信号。本文对高阶统计量方法用于滚动轴承故障特征提取进行了研究,提出了基于双谱估计的滚动轴承故障诊断方法。利用这种方法可以同时获得包含滚动轴承故障信号幅值和相位信息的双谱特征图谱。研究表明,双谱图谱可以有效地监测滚动轴承工作状态的模式,因而可以快速地识别滚动轴承不同的故障特征。 相似文献
13.
基于小波包样本熵的滚动轴承故障特征提取 总被引:5,自引:0,他引:5
将样本熵引入故障诊断领域,讨论了样本熵的性能和计算参数的选择.结合小波包分解和样本熵,提出了一种新的滚动轴承故障特征提取方法.首先对轴承振动信号进行小波包分解;然后对归一化能量最大的子带进行重构,计算重构信号的样本熵;最后通过样本熵评价故障状态.滚动轴承故障诊断实例验证了该方法的有效性. 相似文献
14.
首先利用蛙跳算法对最佳影响参数组合进行搜索,搜索结束后选择最优的参数,利用优化参数的变分模态分解对故障信号处理,得到本征模态函数;为了验证蛙跳算法得到的参数是否为最优参数,选择最佳的本征模态函数进行包络分析,将包络谱的特征频率与实际故障频率相比较;以得到的模态函数构成矩阵,进行奇异值分解,得到信号的奇异值,以奇异值作为极限学习机的输入,对故障类型进行分类。利用优化参数的变分模态分解对仿真信号和实测信号进行分析,均能提取特征信息,对故障类型进行识别,表明该方法有一定的实际意义和实用价值。 相似文献
15.
提出了结合独立分量分析(ICA)和小波变换进行滚动轴承故障诊断的方法。在设计的系统平台上,首先对冲击脉冲信号进行预处理,使信号较好地满足独立分量分析的前提条件。然后,应用独立分量快速算法分离故障轴承的冲击脉冲信号,通过小波快速算法完成信号重构,实现滚动轴承故障的识别。实验结果表明,利用独立分量分析方法提取的故障状态特征向量与小波快速算法相结合可以有效、准确地识别滚动轴承的故障信号。 相似文献
16.
针对滚动球轴承振动加速度信号特征提取问题,提出一种基于中心对称局部二值模式(center-symmetric local binary pattern,简称CSLBP)的时频特征提取方法。首先,利用广义S变换对滚动球轴承振动加速度信号进行处理,通过采用时频聚集性度量准则自适应地确定广义S变换的调整参数,从而获取时频分辨性较好的二维时频图;然后,计算二维时频图的CSLBP,提取CSLBP纹理谱描述滚动球轴承振动加速度信号的时频特征。对滚动球轴承正常、外圈故障、内圈故障和滚动体故障4种不同状态的振动加速度信号进行了研究。结果表明,CSLBP纹理谱能有效地表达滚动球轴承振动加速度信号的时频特征,与局部二值模式(local binary pattern,简称LBP)和统一模式LBP纹理谱相比,CSLBP纹理谱具有特征维数低和区分性能好的优点。 相似文献