首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究泡沫铝夹芯结构的不同组合形式在中低速FSP侵彻下的抗弹性能及破坏机理,开展了系列弹道试验,分析了夹芯结构的破坏模式,得到了前后面板厚度大小、后面板分层对夹芯结构抗弹性能的影响。研究结果表明:在中低速FSP侵彻下,泡沫铝芯材发生了胞壁的绝热剪切破坏,其背弹面发生明显的撕裂破坏;前面板发生绝热剪切破坏,弹孔周围产生明显的碟形弯曲变形;后面板发生塑性变形和拉伸破坏,后面板较薄时,还相应出现花瓣开裂现象。在总面密度相同的情形下,夹芯结构的后面板越厚,整体单位面密度吸能越高,抗弹性能越好;将后面板分层后,整体抗弹性能较不分层有所提高。  相似文献   

2.
缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证   总被引:3,自引:1,他引:2  
基于经典层板理论和细观力学桥联模型, 提出了缝纫泡沫夹芯复合材料失效强度的理论预测方法, 并进行了失效强度的相关试验验证。其中, 将缝纫复合材料面板看作单层组成的准层状结构, 采用经典层板理论进行逐层失效分析, 并同时考虑了局部皱曲的面板失效模式; 而对缝纫泡沫夹芯, 引入桥联模型计算其各组分材料中的应力, 并通过对各组分材料选取适当失效准则来建立失效判据; 对于缝纫泡沫夹芯复合材料采取逐级加载方式, 当面板或者夹芯失效时, 则认为其发生整体失效, 由此可以确定其在不同载荷形式下的失效强度。此外, 通过试验得到了缝纫泡沫夹芯复合材料板试件在平压、 侧压、 横向剪切及三点弯曲载荷形式下的失效模式及其失效强度, 并利用本文方法对缝纫泡沫夹芯复合材料的失效强度进行了理论预测, 所得结果与试验吻合, 证明了本文方法的有效性。   相似文献   

3.
根据侵彻过程中的不同受力状态,将高速钝头弹对中厚金属靶板的侵彻过程划分为简单压缩阶段、压缩剪切阶段和绝热剪切阶段,每个侵彻阶段都呈现出不同的吸能模式。基于三阶段侵彻机理,建立了钝头弹侵彻中厚金属靶板的弹道极限和剩余速度计算模型;利用侵彻模型计算了3.3g立方体和9.7g圆柱体侵彻4mm、6mm和10mm船用钢的剩余速度,计算值与试验值有较好的吻合。三阶段侵彻模型考虑了试验中出现的发热、发光等现象的吸能,并对金属靶板的抗弹能力和钝头弹的侵彻能力进行了预测,可以降低试验成本,具有一定的理论价值和工程应用价值。  相似文献   

4.
为深入研究钨合金杆式弹芯在穿甲侵彻过程中的失效机制,利用LS-DYNA3D动力学软件对侵彻开坑阶段的塑性变形演化和绝热剪切失效进行数值模拟。侵彻开坑阶段,弹芯头部首先形成蘑菇头,随后在蘑菇头后端帽檐处和最前端鼻尖处分别形成绝热剪切失效;得到剪切带内的等效塑性应变、应力状态和温度变化等特征参量,并分析了剪切失效对弹芯侵彻性能的影响。侵彻开坑阶段虽然时间很短,弹芯的受力状态变化较快,蘑菇头最前端的绝热剪切失效可能造成弹芯侵彻的瞬间停滞而对侵彻性能起消极作用。  相似文献   

5.
两端固支泡沫铝夹芯梁在冲击荷载作用下的动力响应   总被引:1,自引:1,他引:0  
提出两端固支泡沫铝夹芯梁在跨中受到冲击荷载作用下动力响应的简化理论计算方法。运用该方法及有限元软件LS-DYNA分别计算了泡沫铝夹芯梁在冲击荷载作用下的动力响应,着重考查了面板材料及芯材厚度对泡沫铝夹芯梁跨中位移的影响情况。并通过试验测量结果对理论计算结果及数值模拟结果进行了验证。研究显示,在不同冲量作用下,泡沫铝夹芯梁跨中位移理论值与实验结果两者符合程度较好,最大误差仅为14%;HRB335级钢面板泡沫铝夹芯梁较304#不锈钢面板泡沫铝夹芯梁在相同冲量作用下具有更小的跨中位移;芯材厚度的增加对提高泡沫铝夹芯梁抵抗冲击荷载的性能也有一定的贡献,夹芯梁芯材厚度由10mm增加至20mm,其跨中位移减小了33%左右。  相似文献   

6.
应用泡沫金属子弹撞击加载的方式研究了固支多孔金属夹芯板的塑性动力响应。讨论了多孔金属夹芯板在冲击载荷作用下的破坏模式。结果表明夹芯板的破坏主要表现在前面板的压痕与侵彻失效,芯层压缩和芯层剪切破坏。基于实验研究,应用LS-DYNA 3D非线性动力学有限元分析软件对夹芯板动力响应进行了有限元分析。数值研究结果与实验结果吻合较好。考察了加载冲量、面板厚度、芯层厚度及相对密度对多孔金属夹芯板抗撞击性能的影响。夹芯板的结构响应对其结构配置比较敏感,增加面板厚度或芯层厚度能够明显地减小后面板的挠度,提高夹芯板的抗撞击能力。研究结果对多孔金属夹芯板的优化设计具有一定得参考价值。  相似文献   

7.
在弹体高速侵彻硬目标和弹箭爆炸抛撒过程等环境中,弹载测控电路将承受数万g的冲击加速度作用,因此需要对测控电路模块进行缓冲保护.为了设计较优的保护结构,提出了3种不同厚度的铝壳和不同密度泡沫铝的填充结构,利用LS-DYNA有限元软件,从载荷效率、比吸能、隔冲效率以及最大加速度响应等4个评价指标对泡沫铝填充铝壳缓冲吸能效果进行评估.结果表明,厚度为0.8mm、密度为1.1g/cm3填充结构的缓冲吸能效果在不同组合中最好.  相似文献   

8.
利用MTS和落锤试验机研究了由复合材料面板和闭孔泡沫铝芯层组成的夹芯板结构在压入和侵彻时的变形和失效行为,并通过引入无量纲参数——能量吸收效率因子,探讨了一些关键参数对夹芯板压入和侵彻性能以及能量吸收性能的影响,如冲击能量、面板厚度、芯层厚度及相对密度、压头/锤头形状和边界条件等。结果表明夹芯板的破坏主要集中在压头作用的局部区域内。夹芯板的能量吸收效率对其结构参数比较敏感,增加上层面板厚度、芯层厚度或芯层相对密度能够有效地提高夹芯板结构的能量吸收能力以及抵抗压入和侵彻的能力,而下层面板厚度的对夹心板抗侵彻性能的影响不明显。不同的压头/锤头形状和边界条件对泡沫铝夹芯板的压入和侵彻响应以及能量吸收性能影响明显。  相似文献   

9.
根据侵彻过程中的不同受力状态和耗能机制,结合高强聚乙烯纤维增强塑料(UFRP)层合板抗高速侵彻特点,将高速钝头弹对中厚UFRP的侵彻过程分为压缩镦粗、剪切压缩和拉伸变形三个阶段。基于三阶段侵彻机制,利用能量守恒原理建立了钝头弹高速侵彻中厚UFRP的弹道极限和剩余速度计算模型。采用侵彻模型计算了相关文献弹道试验工况下弹体的剩余速度和弹道极限速度,计算值与文献试验值吻合较好。三阶段侵彻模型考虑了试验中出现的纤维熔断和弹体镦粗现象,能够对高速钝头弹侵彻中厚UFRP的剩余速度和弹道极限速度进行合理预测,具有一定的理论价值和工程应用价值。  相似文献   

10.
根据破片模拟弹侵彻钢板的实验研究,采用MSC.Dytran对破片模拟弹侵彻钢板的侵彻过程、侵彻特性、钢板的破坏模式以及弹体的侵彻速度、靶板的侵彻阻力进行了有限元分析,并将分析结果与实验结果进行了比较.分析结果表明,破片模拟弹冲击钢装甲的侵彻过程可大致分为初始接触、弹体侵入、剪切冲塞和穿甲破坏4个阶段.有限元分析的破片模拟弹侵彻特性及靶板破坏模式与实验观测结果有较好的一致性,在靶板破口的正面,与弹体平面凸缘两端接触的部分,变形以剪切为主,而与切削面接触的部分,以挤压变形为主;靶板破口背面为剪切冲塞破坏;有限元模拟的弹体剩余速度与实验结果吻合较好,弹体侵彻过程中弹靶作用界面的速度和侵彻速度近似呈线性变化.有限元分析结果还表明,采用适当的模型,有限元法能较好地模拟破片模拟弹侵彻钢板的侵彻过程、侵彻特性以及钢板的破坏模式.  相似文献   

11.
通过弹道冲击实验方法研究了两种点阵金属夹层防护结构的抗弹丸侵彻能力,结合失效破坏模式和吸能效率,综合分析了点阵金属夹层防护结构的抗侵彻机理。实验结果初步表明:球形弹丸侵彻过程中,由于点阵金属结构的塑性大变形和剪切扩孔、陶瓷棒和环氧树脂的断裂破坏以及面板的宏观弯曲变形,使得该型防护结构的抗弹能力得到了大幅度提高。同样侵彻速度条件下,Type Ⅱ型夹层防护结构的吸收能量较Type Ⅰ型夹层防护结构高,但它们的单位面密度吸收能量相差不大。研究结果可以为轻质复合装甲的防护设计提供参考。  相似文献   

12.
为研究多层异质复合结构动力学响应及抗侵彻性能,利用霍普金森试验装置,对不同材料排布顺序及含泡沫铝夹芯的多层复合结构进行冲击加载,通过贴在入射杆和透射杆上的应变片测得入射波、反射波、透射波波形,验证数值仿真模型正确性;结合数值模拟,研究不同结构对试件内部应力波传播特性和应力场分布影响规律;依据复合结构动力学响应特征,设计复合靶板并进行抗侵彻试验,分析靶板塑性变形特征及抗侵彻耗能机制;通过数值模拟分析泡沫铝夹芯厚度对防护性能影响。结果表明,装甲钢后置复合结构及含泡沫夹芯结构有助于减缓应力集中,减小陶瓷损伤面积;泡沫铝夹芯过厚难以为靶板变形提供支撑,降低抗侵彻阻力;五种夹芯厚度h=2 mm、h=5 mm、h=10 mm、h=20 mm、h=30 mm中,h=10 mm对应多层异质复合靶防护性能最优。   相似文献   

13.
整体屈曲是缝纫复合材料夹芯板的一种重要失效模式。考虑到缝纫夹芯复合材料板一般较厚且面板与芯层厚度相差较大, 缝纫工艺对夹芯板刚度影响较大的特点, 基于高阶剪切理论, 编制了缝纫泡沫夹芯复合材料板稳定性分析的有限元程序。利用该程序对多个算例进行了计算, 所得临界屈曲应力与文献及试验结果吻合很好。同时, 讨论了不同边界条件下缝纫泡沫夹芯复合材料板稳定性随缝纫参数(包括针距、 行距和缝纫针半径)以及结构参数(包括面板铺层角、 芯层厚度和缝纫夹芯板边长)的变化规律。   相似文献   

14.
陶瓷棒填充点阵金属夹层结构的制备及抗侵彻实验   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高轻量化复合装甲的抗侵彻能力,提出了内部填充陶瓷棒并由混杂短切玻璃纤维的环氧树脂封装的点阵金属夹层防护结构。首先,通过弹道冲击实验研究了陶瓷棒填充点阵金属夹层防护结构的抗弹丸侵彻能力;然后,结合失效模式和吸能效率,综合分析了该夹层防护结构的抗侵彻机制。结果表明:陶瓷棒填充点阵金属夹层防护结构的主要失效模式包括点阵金属结构和混杂填充材料的拉伸断裂、陶瓷棒的破裂、面板和背板的局部剪切破坏以及背板的总体弯曲变形。在球形弹丸侵彻过程中,由于点阵金属结构的塑性大变形和剪切扩孔、陶瓷棒和环氧树脂的断裂破坏以及面板的宏观弯曲变形,防护结构的抗侵彻能力得到大幅提高。研究结果可为新型轻质复合装甲的防护设计提供一定参考。   相似文献   

15.
FRC层合板抗高速冲击机理研究   总被引:9,自引:0,他引:9       下载免费PDF全文
基于纤维增强复合材料( FRC) 层合板高速冲击下横向变形及破坏模式的分析, 根据冲击动力学理论和应力波传播特性, 建立了FRC 层合板柱形弹高速冲击下的两阶段(剪切侵彻和连续侵彻) 侵彻动力学分析模型。采用瞬态梯度变形锥理论分析了连续侵彻阶段的弹、靶相互作用, 并编制相应计算程序, 通过计算结果与实验测试结果的综合比较, 弹体初速在300~900 m/ s 范围内, 剩余速度误差小于50 m/ s , 验证了两阶段侵彻模型的适用性和稳定性, 分析了实验现象, 如梯度变形锥、背层花瓣开裂和面背层破坏模式差异等的产生及形成机理, 提出了提高现有层板结构抗弹性能的新途径, 如降低层间粘结强度、提高面层纤维的抗剪能力等。   相似文献   

16.
针对弹体侵彻混凝土环境,提出一种中薄型防护外壳嵌套内壳体,两壳体间填充泡沫铝缓冲材料的记录仪抗冲击防护结构。针对应力波作用下防护外壳的屈曲和泡沫铝缓冲性能不足导致内部电路模块冲击断裂的典型失效模式,通过对记录仪抗冲击防护结构在应力波作用下的结构响应分析,提出一套以壳体厚度h、泡沫铝密度ρ、泡沫铝厚度h_b为主要设计指标的弹载加速度记录仪抗冲击防护结构设计方法。设计出防护外壳半径为29 mm,壁厚3 mm,泡沫铝密度1.1g/cm~3,泡沫铝厚度23 mm的抗冲击防护结构,经计算该结构理论抗冲击能力为63 300 g。在实弹侵彻混凝土试验中,测得冲击加速度峰值为56 300 g,在此冲击下记录仪壳体结构稳定,内部电路工作正常,验证了此抗冲击防护结构具有较高的可靠性。  相似文献   

17.
为考查泡沫铝夹芯梁面板材料对其抗冲击性能的影响,运用数值模拟方法计算了相同重量下面板材料分别为304#不锈钢、工业纯铝和HRB335级钢三种泡沫铝夹芯梁在不同冲量作用下的动力响应;分析了面板材料对泡沫铝夹芯梁跨中变形及芯材压缩应变的影响.结果显示,在冲量相同的情况下,面板材料对泡沫铝夹芯梁的抗冲击性能有一定的影响;爆炸...  相似文献   

18.
《工程爆破》2022,(1):20-23
为考查泡沫铝夹芯梁面板材料对其抗冲击性能的影响,运用数值模拟方法计算了相同重量下面板材料分别为304#不锈钢、工业纯铝和HRB335级钢三种泡沫铝夹芯梁在不同冲量作用下的动力响应;分析了面板材料对泡沫铝夹芯梁跨中变形及芯材压缩应变的影响。结果显示,在冲量相同的情况下,面板材料对泡沫铝夹芯梁的抗冲击性能有一定的影响;爆炸荷载冲量越大,芯材的压缩应变越大,而且面板材料对压缩应变的这种影响也相应地增大。在较大的冲量作用下,HRB335级钢面板泡沫铝夹芯梁的跨中位移及芯材压缩应变都是三者中最小的。  相似文献   

19.
采用泡沫金属子弹撞击加载的方式研究了T700碳纤维复合材料面层-泡沫铝芯体的夹芯结构动力响应。利用激光测速装置、高速摄像仪和位移传感器记录了泡沫子弹的撞击速度、子弹撞击夹芯板全过程和夹芯板后面板中心点的位移时程曲线。研究了加载冲量和芯层相对密度对夹芯板冲击响应的影响,得到了碳纤维复合材料-泡沫铝夹芯板的变形与失效模式。同时,采用ABAQUS有限元软件进行数值模拟,研究了复合材料面板铺层方式、面层厚度、芯层厚度和相对密度以及泡沫铝子弹的长度、速度和相对密度等参数对夹芯板冲击响应的影响。  相似文献   

20.
为比较系统地了解表面粘贴泡沫铝及其夹芯层对结构上作用冲击波峰值压力的衰减性能与影响因素,运用理论及数值模拟方法分析了泡沫铝及其夹芯层衰减冲击波峰值压力的性能。并讨论了影响泡沫铝及其夹芯层衰减冲击波峰值压力的几个主要因素。研究结果显示,在达到压实应变之前,表面粘贴泡沫铝及其夹芯层能有效地衰减冲击波的峰值压力。达到压实应变后,泡沫铝及其夹芯层对冲击波峰值压力的衰减性能下降。孔洞形式、相对密度对泡沫铝衰减冲击波峰值压力具有明显地影响,面板材料对泡沫铝夹芯层衰减冲击波峰值压力的性能也有一定的影响。要取得较好地衰减冲击波峰值压力的性能需综合考虑以上因素进行优化设计,否则可能出现粘贴的泡沫铝或其夹芯层达不到衰减结构上冲击波峰值压力的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号