首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental and mathematical modeling studies were performed to investigate the transport and retention of nanoscale fullerene aggregates (nC60) in water-saturated porous media. Aqueous suspensions of nC60 aggregates (95 nm diameter, 1 to 3 mg/L) were introduced into columns packed with either glass beads or Ottawa sand at a Darcy velocity of 2.8 m/d. In the presence of 1.0 mM CaCl2, nC60 effluent breakthrough curves (BTCs) gradually increased to a maximum value and then declined sharply upon reintroduction of nC60-free solution. Retention of nC60 in glass bead columns ranged from 8 to 49% of the introduced mass, while up to 77% of the mass was retained in Ottawa sand columns. When nC60 suspensions were prepared in deionized water alone, effluent nC60 BTCs coincided with those of a nonreactive tracer (Br-), with minimal nC60 retention. Observed differences in nC60 transport and retention behavior in glass beads and Ottawa sand were consistent with independent batch retention data and theoretical calculations of electrostatic interactions between nC60 and the solid surfaces. Effluent concentration and retention profile data were accurately simulated using a numerical model that accounted for nC60 attachment kinetics and a limiting retention capacity.  相似文献   

2.
Laboratory column experiments for colloidal transport and retention are often carried out with flow direction oriented against gravity (up-flow) to minimize retention of trapped air. However, the models that underlie colloidal filtration theory (e.g., unit cell models such as the Happel sphere-in-cell and hemispheres-in-cell) typically set flow in the same direction as gravity (down-flow). We performed unit model simulations and experimental observations of retention of colloids with different size and density in porous media in the absence of energy barriers under both up-flow and down-flow conditions. Unit cell models predicted very different deposition (e.g., for large or dense colloids with gravity number N(G) > 0.01 at pore water velocity of 4 m/day) under down-flow versus up-flow conditions, which reflect underlying influences of gravity and flow on simulated colloid trajectories that resulted in very different distributions of attached colloids over the model surfaces. The Happel sphere-in-cell model showed greater sensitivity to flow orientation relative to gravity than the hemispheres-in-cell model. In contrast, experimental results were relatively insensitive to orientation of flow with respect to gravity, as a result of the variety of orientations of flow relative to gravity and to the porous media surface that exist in actual porous media. Notably, the down-flow simulations corresponded most closely to the experimental results (for near neutrally buoyant colloids); which justifies the common practice of comparing up-flow experiments to theoretical predictions developed for down-flow conditions.  相似文献   

3.
The use of nanoscale ferrihydrite particles, which are known to effectively enhance microbial degradation of a wide range of contaminants, represents a promising technology for in situ remediation of contaminated aquifers. Thanks to their small size, ferrihydrite nanoparticles can be dispersed in water and directly injected into the subsurface to create reactive zones where contaminant biodegradation is promoted. Field applications would require a detailed knowledge of ferrihydrite transport mechanisms in the subsurface, but such studies are lacking in the literature. The present study is intended to fill this gap, focusing in particular on the influence of flow rate and ionic strength on particle mobility. Column tests were performed under constant or transient ionic strength, including injection of ferrihydrite colloidal dispersions, followed by flushing with particle-free electrolyte solutions. Particle mobility was greatly affected by the salt concentration, and particle retention was almost irreversible under typical salt content in groundwater. Experimental results indicate that, for usual ionic strength in European aquifers (2 to 5 mM), under natural flow condition ferrihydrite nanoparticles are likely to be transported for 5 to 30 m. For higher ionic strength, corresponding to contaminated aquifers, (e.g., 10 mM) the travel distance decreases to few meters. A simple relationship is proposed for the estimation of travel distance with changing flow rate and ionic strength. For future applications to aquifer remediation, ionic strength and injection rate can be used as tuning parameters to control ferrihydrite mobility in the subsurface and therefore the radius of influence during field injections.  相似文献   

4.
The discovery that negatively charged aggregates of C60 fullerene are stable in aqueous environments has elicited concerns regarding the potential environmental and health effects of these aggregates. Many previous studies have used aggregates synthesized using intermediate organic solvents. This work primarily employed an aggregate production method that more closely emulates the fate of C60 upon accidental release into the environment: extended mixing in water. The aggregates formed via this method (aqu/nC60) differ from those produced using the more common solvent exchange methods. The aqu/nC60 aggregates are heterogeneous in size (20 nm and larger) and shape (facetted to spherical), negatively charged, and crystalline in structure, exhibiting a face centered cubic (FCC) system. Solution characteristics such as aqu/nC60 aggregate size and concentration were found to be dependent upon preparation variables such as initial C60 concentration, initial particle size, and the presence or absence of natural organic matter. These results indicate that care should be taken when attempting to compare experimental results obtained with aqu/nC60 to nC60 produced by solvent exchange methods.  相似文献   

5.
A three-dimensional particle tracking model for colloid transport in porous media was developed that predicts colloid retention in porous media in the presence of an energy barrier via two mechanisms: (1) wedging of colloids within grain to grain contacts; (2) retention of colloids (without attachment) in flow stagnation zones. The model integrates forces experienced by colloids during transport in porous media, i.e., fluid drag, gravity, diffusion, and colloid-surface Derjaguin-Landau-Verwey-Overbeek interactions. The model was implemented for a fluid flow field that explicitly represented grain to grain contacts. The model utilized a variable time stepping routine to allow finer time steps in zones of rapid change in fluid velocity and colloid-surface interaction forces. Wedging was favored by colloid: collector ratios greater than about 0.005, with this threshold ratio increasing with decreasing fluid velocity. Retention in flow stagnation zones was demonstrated for colloid: collector ratios less than about 0.005, with this threshold decreasing with increasing fluid velocity. Both wedging and retention in flow stagnation zones were sensitive to colloid-surface interaction forces (energy barrier height and secondary energy minimum depth). The model provides a mechanistic basis for colloid retention in the presence of an energy barrier via processes that were recently hypothesized to explain experimental observations.  相似文献   

6.
The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.  相似文献   

7.
Concentrated suspensions of polymer-modified Fe(0) nanoparticles (NZVI) are injected into heterogeneous porous media for groundwater remediation. This study evaluated the effect of porous media heterogeneity and the dispersion properties including particle concentration, Fe(0) content, and adsorbed polymer mass and layer thickness which are expected to affect the delivery and emplacement of NZVI in heterogeneous porous media in a two-dimensional (2-D) cell. Heterogeneity in hydraulic conductivity had a significant impact on the deposition of NZVI. Polymer modified NZVI followed preferential flow paths and deposited in the regions where fluid shear is insufficient to prevent NZVI agglomeration and deposition. NZVI transported in heterogeneous porous media better at low particle concentration (0.3 g/L) than at high particle concentrations (3 and 6 g/L) due to greater particle agglomeration at high concentration. High Fe(0) content decreased transport during injection due to agglomeration promoted by magnetic attraction. NZVI with a flat adsorbed polymeric layer (thickness ~30 nm) could not be transported effectively due to pore clogging and deposition near the inlet, while NZVI with a more extended adsorbed layer thickness (i.e., ~70 nm) were mobile in porous media. This study indicates the importance of characterizing porous media heterogeneity and NZVI dispersion properties as part of the design of a robust delivery strategy for NZVI in the subsurface.  相似文献   

8.
Colloidal transport in porous media has been typically studied in column experiments from which data analysis was limited to the evaluation of effluent breakthrough curves and/or destructive sampling at the end of the experiments. The internal processes occur within a "black box", where direct observation is not possible and therefore are often poorly understood. In this paper, a nondestructive, noninvasive method is presented that allows for quantitative measurement of colloid distribution with unprecedented two-dimensional spatial and temporal resolution. This technique is well-suited to observing the effects of saturation transitions and physical heterogeneities on colloidal transport. The potential of this novel technique is explored by investigating the effect of particle size and concentration on flow dynamics under saturated and unsaturated conditions. In saturated-flow experiments, deviation from the classical advection-dispersion behavior is observed. In unsaturated systems, colloidal accumulation at the capillary fringe interface and a high deposition rate of microspheres to the unsaturated media are readily observed. The experimental system is limited to translucent porous media and fluorescent colloids and is only semiquantitative in variably saturated media; nevertheless, it holds great promise for elucidating many complex mechanisms that control or influence colloid transport in the subsurface.  相似文献   

9.
Stable aqueous suspensions of colloidal C60 fullerenes free of toxic organic solvents were prepared by two methods: ethanol to water solvent exchange (EthOH/nC60 suspensions) and extended mixing in water (aqu/nC60 suspensions). The extended mixing method resulted in the formation of larger (dp approximately 178 nm) and less negatively charged (zeta approximately -13.5 mV) nC60 colloids than nC60 prepared by ethanol to water solvent exchange (dp approximately 122 nm, zeta approximately -31.6 mV). Genotoxicity of these suspensions was evaluated with respect to human lymphocytes using single-cell gel electrophoresis assay (Comet assay). The assay demonstrated genotoxicity for both types of suspensions with a strong correlation between the genotoxic response and nC60 concentration, and with genotoxicity observed at concentrations as low as 2.2 microg/L for aqu/nC60 and 4.2 microg/L for EtOH/nC60. The Olive tail moments (OTM) for these two concentrations were 1.54 +/- 0.24 and 1.34 +/- 0.07, respectively, which in comparison to the negative control OTM of 0.98 +/- 0.17 is statistically different with a p value of at least 0.05. Aqu/nC60 suspensions elicited higher genotoxic response than EthOH/nC60 for the same nC60 concentration. The results represent the first genotoxicity data for colloidal fullerenes produced by simple mixing in water.  相似文献   

10.
The goal of this study is to investigate the impact of biofilm physical and biological properties on bacterial transport and deposition in porous media. Experiments were performed in packed columns to examine the removal of Erwinia chrysanthemi (Ech3937), a phytopathogen, from the bulk fluid due to its attachmentto glass beads coated with Pseudomonas aeruginosa biofilms. Two isogenic P. aeruginosa strains, PAO1 and PD0300, with different EPS secretion capabilities and EPS compositions, were used to culture biofilms. The Ech3937 transport and distribution in packed columns were studied in both upflow and downflow cell injection modes over a range of solution ionic strengths. The results show that the presence of biofilm strongly interferes with the deposition behavior of Ech3937 in porous media. The spatial variation of deposited Ech3937 cells contradicts the log-linear pattern predicted by the classic filtration theory, indicating that the biofilm physical structure and polymeric interactions between the biofilm EPS and Ech3937 cell surface are the main mechanisms that control bacterial deposition. When the biofilm accumulation is relatively small, bacterial adhesion onto biofilm-coated porous media is mainly inhibited by steric forces. By contrast, cell deposition is enhanced by the reduced porous media porosity when biofilm is more abundant.  相似文献   

11.
We present results on the migration of silica colloids through laboratory columns packed with partially saturated quartz sand. The transport of the silica colloids responds to changes in the steady-state volumetric moisture content (theta) and for low theta depends on the wetting history of the sand pack prior to colloid injection. A mathematical model that incorporates a first-order rate law to simulate film straining and a second-order rate law to simulate partitioning at air-water interfaces closely describes colloid transport and mass transfer over the range of experimental conditions tested. The mass-transfer parameters of the model are sensitive to changes in both the level of water saturation and the flow rate. A semiempirical expression, based on a modification of film-straining theory, accounts for the observed variation in the first-order rate coefficient with changes in theta and average porewater velocity. Our work indicates that the presence of the air phase substantially influences porewater concentrations of mineral colloids in water-unsaturated media and that the kinetics of particle removal attributed to air-water boundaries reflects the contribution of multiple mass-transfer mechanisms.  相似文献   

12.
The deposition and re-entrainment behaviors of five sizes of carboxylate-modified microspheres (ranging from 0.1 to 2.0 microm) were examined both in porous media and impinging jet systems under a variety of environmentally relevant pore fluid velocities (2-8 m day-'), and in both the absence and the presence of an energy barrier to deposition. The magnitudes of the deposition efficiencies were compared among the porous media and impinging jet systems under equivalent fluid velocities, solution chemistries, and surface chemistries. The observed deposition efficiencies were factors of about 5 to 50 greater in the porous media relative to the impinging jet across the entire size range of microspheres examined, demonstrating that this excess deposition in porous media is relevant to a wide range of colloid sizes. The magnitude of excess deposition increased with increasing fluid velocity, and was greatest for the smallest colloids (0.1 microm). A range between 15% and 40% of the excess retained colloids were released upon introduction of low ionic strength solution, indicating that they were retained via secondary energy minima without direct contact with the grain surfaces. The observations indicate that pore geometry is a critical governor of colloid deposition in the presence of an energy barrier, even in porous media composed of spherical collectors. A portion of this excess deposition results from retention in flow stagnation zones.  相似文献   

13.
A field method called the gas push-pull test (GPPT) was previously developed and tested for the in situ quantification of aerobic methane (CH4) oxidation by soil microorganisms. The GPPT consists of an injection followed by extraction of reactant and tracer gases into and out of the soil. Quantification of microbial activities from GPPTs requires insight in the transport of reactant and tracer gases under diverse field conditions. We investigated how the transport of differenttracer gases (He, Ne, and Ar) compares to that of the reactant gas CH4 during GPPTs conducted in a well-defined, dry porous media that mimicked an open system. Transport of gaseous components during GPPT is mainly driven by advection resulting from injection and extraction and diffusion driven by concentration gradients. Regardless of the advective component (selected injection/ extraction, flow rates 0.2-0.8 L min(-1)), diffusion was the dominant transport mechanism for gaseous components. This resulted in dissimilar transport of CH4 and the tracers He and Ne. Numerical simulations of GPPTs showed that similar transport of these components is only achieved at very high injection/extraction rates that, in practice, are not feasible since they would imply extremely short duration times of GPPTs to allow for consumption of a measurable amount of reactant(s) by soil microorganisms. However, Ar transport was similar to that of CH4. Hence, Ar may be a good tracer provided that it is injected at high concentrations (e.g., >25% [v/v]) to overcome its background concentration in soil air. Using moderate injection/ extraction rates (e.g., 0.6 L min(-1)) with injected volumes of 10-30 L will result in GPPT durations of 1-3 h, which would suffice to attain a measurable consumption of reactant(s) in soils having relatively high (e.g., first-order rate constants >0.3 h(-1)) microbial activities.  相似文献   

14.
Bioremediation is a cost-efficient cleanup technique that involves the use of metabolically active bacteria to degrade recalcitrant pollutants. To further develop this technique it is important to understand the migration and deposition behavior of metabolically active bacteria in unsaturated soils. Unsaturated transport experiments were therefore performed using Deinococcus radiodurans cells that were harvested during the log phase and continuously supplied with nutrients during the experiments. Additional experiments were conducted using this bacterium in the stationary phase. Different water saturations were considered in these studies, namely 100 (only stationary phase), 80, and 40%. Results from this study clearly indicated thatthe physiological state of the bacteria influenced its transport and deposition in sands. Metabolically active bacteria were more hydrophobic and exhibited greater deposition than bacteria in the stationary phase, especially at a water saturation of 40%. The breakthrough curves for active bacteria also had low concentration tailing as a result of cell growth of retained bacteria that were released into the liquid phase. Collected breakthrough curves and deposition profiles were described using a model that simultaneously considers both chemical attachment and physical straining. New concepts and hypotheses were formulated in this model to include biological aspects associated with bacteria growth inside the porous media.  相似文献   

15.
The gas push-pull test (GPPT) is a single-well gas-tracer method to quantify in situ rates of CH4 oxidation in soils. To improve the design and interpretation of GPPT field experiments, gas component transport during GPPTs was examined in abiotic porous media over a range of water saturations (0.0 < or = Sw < or = 0.61). A series of GPPTs using He, Ne, and Ar as tracers for CH4 were performed at two injection/extraction gas flow rates (approximately 200 and approximately 700 mL min(-1)) in a laboratory tank. Extraction phase breakthrough curves and mass recovery curves of the gaseous components became more similar at higher Sw as water in the pore space restricted diffusive gas-phase transport. Diffusional fractionation of the stable carbon isotopes of CH4 during the extraction period of GPPTs also decreased with increasing Sw (particularly when Sw > 0.42). Gas-component transport during GPPTs was numerically simulated using estimated hydraulic parameters for the porous media and no fitting of data for the GPPTs. Numerical simulations accurately predicted the relative decline of the gaseous components in the breakthrough curves, but slightly overestimated recoveries at low Sw (< or = 0.35) and underestimated recoveries at high Sw (> or = 0.49). Comparison of numerical simulations considering and not considering air-water partitioning indicated that removal of gaseous components through dissolution in pore water was not significant during GPPTs, even at Sw = 0.61. These data indicate that Ar is a good tracer for CH4 physical transport over the full range of Sw studied, whereas, at Sw > 0.61, any of the tracers could be used. Greater mass recovery at higher Sw raises the possibility to reduce gas flow rates, thereby extending GPPT times in environments such as tundra soils where low activity due to low temperatures may require longer test times to establish a quantifiable difference between reactant and tracer breakthrough curves.  相似文献   

16.
The transport of uncoated silver nanoparticles (AgNPs) in a porous medium composed of silica glass beads modified with a partial coverage of iron oxide (hematite) was studied and compared to that in a porous medium composed of unmodified glass beads (GB). At a pH lower than the point of zero charge (PZC) of hematite, the affinity of AgNPs for a hematite-coated glass bead (FeO-GB) surface was significantly higher than that for an uncoated surface. There was a linear correlation between the average nanoparticle affinity for media composed of mixtures of FeO-GB and GB collectors and the relative composition of those media as quantified by the attachment efficiency over a range of mixing mass ratios of the two types of collectors, so that the average AgNPs affinity for these media is readily predicted from the mass (or surface) weighted average of affinities for each of the surface types. X-ray photoelectron spectroscopy (XPS) was used to quantify the composition of the collector surface as a basis for predicting the affinity between the nanoparticles for a heterogeneous collector surface. A correlation was also observed between the local abundances of AgNPs and FeO on the collector surface.  相似文献   

17.
The use of zerovalent iron micro- and nanoparticles (MZVI and NZVI) for groundwater remediation is hindered by colloidal instability, causing aggregation (for NZVI) and sedimentation (for MZVI) of the particles. Transportability of MZVI and NZVI in porous media was previously shown to be significantly increased if viscous shear-thinning fluids (xanthan gum solutions) are used as carrier fluids. In this work, a novel modeling approach is proposed and applied for the simulation of 1D flow and transport of highly concentrated (20 g/L) non-newtonian suspensions of MZVI and NZVI, amended with xanthan gum (3 g/L). The coupled model is able to simulate the flow of a shear thinning fluid including the variable apparent viscosity arising from changes in xanthan and suspended iron particle concentrations. The transport of iron particles is modeled using a dual-site approach accounting for straining and physicochemical deposition/release phenomena. A general formulation for reversible deposition is herein proposed, that includes all commonly applied dynamics (linear attachment, blocking, ripening). Clogging of the porous medium due to deposition of iron particles is modeled by tying porosity and permeability to deposited iron particles. The numerical model proved to adequately fit the transport tests conducted using both MZVI and NZVI and can develop into a powerful tool for the design and the implementation of full scale zerovalent iron applications.  相似文献   

18.
Changes in the hydraulic properties of porous material due to bioclogging have been observed in many laboratory simulations and field studies. Because such changes in hydraulic properties influence the movement of fluids and contaminants, microbial ecology data are required for improved transport modeling. Here we investigate the effects of environmental variables previously shown to influence bioclogging, specifically oxygen availability, sediment grain size, and organic carbon (nutrient) concentration on the hydraulic properties of simulated subsurface environments. Our study provides evidence of a different clogging mechanism for aerobic and anaerobic microbial communities under high organic carbon concentrations (400 mg L(-1)). This work also suggests that the clogging mechanism operating in anaerobic microbial communities is more sensitive to carbon availability than that in the aerobic microbial communities. We found that grain size does have an effect on clogging, but it appears that there is a threshold carbon concentration, and therefore biomass, below which these effects are insignificant. Differences between the microbial communities that developed under different oxygenation conditions were detected using 16s rRNA analysis.  相似文献   

19.
The role of humic acid in the transport of negatively charged colloids through porous media was examined. Adsorption of humic acid on latex colloids and silica collectors reduced the deposition of suspended particles and enhanced the reentrainment of deposited particles in porous media. These effects are considered to arise from additional electrostatic and steric contributions to the repulsive interaction energy due to the adsorption of negatively charged humic acid on both the suspended particles and the media collectors. At low ionic strength reversible deposition in shallow secondary minima is hypothesized to be the principal attachment mechanism, independent of the presence of humic acid. It is proposed that under these solution conditions, particle deposition and reentrainment are the result of a dynamic process, in which particles are continuously captured and released from secondary minima. At higher ionic strengths, deposition may be regarded as a combination of two mechanisms: capture in the primary well and capture in the secondary minimum. Theoretical calculations of the attachment efficiency were conducted using two existing mathematical models. The first model is based on deposition in the primary well (interaction force boundary layer, IFBL), and the second model is based on the Maxwell kinetic theory and deposition in the secondary minimum (Maxwell model). Simulations conducted with the Maxwell model provide significantly better fits of the experimental results than those conducted with the IFBL model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号