首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The paper presents the results of tribological and nanoscale research on model friction couples intended for hip joint prostheses. The tribological tests were performed by means of reciprocating pin on plate testing machine. The investigated friction pairs contained plates rubbing against polymer pins. The test plates were made from seven kinds of ceramics containing different concentrations of ZrO2 and Al2O3, and two kinds of Co–Cr alloy. The test pins were made from UHMWPE. Tribological tests were performed in conditions of Ringer solution circulation. On the basis of friction force measurements, for each investigated friction couple, the average coefficient of friction was calculated. On the basis of total wear measurements, for each investigated couple, the wear intensity was calculated. Before and after every test, the plates and pins were analysed by means of atomic force microscopy. The difference in plate surface roughness was determined by the results of the atomic force microscopy analyses.

It was stated, that in the case of investigated friction joints, working under reciprocating motion, the wear and friction coefficient correlates with the surface roughness of plate specimens. For the plates with higher surface roughness, the lower friction coefficient and also lower UHMWPE pin wear intensity were observed. The friction coefficient and wear intensity were increasing with decreasing surface roughness. The correlation is confirmed by the differences in material transfer process. Considering investigated friction couples, the pin polymer material is smeared on the ceramic plates with the highest surface roughness creating a thin polymer film. In the case of ceramic surfaces with the lowest surface roughness, the strong adhesive bounds are created and some large particles of polymer are transferred to ceramic surface.  相似文献   

2.
In this paper, a kind of textured amorphous carbon film with the pattern of micro dots matrix was developed by irradiating amorphous carbon film with Nd–yttrium aluminum garnet laser system. Confirmed by the characterizations is that the produced micro dots are protuberant and in nanocrystalline graphite phase with a porous structure and reduced hardness. The micro tribological behavior of textured film was studied experimentally using steel balls and Si3N4 balls as the counter body. It turns out that the influences of laser treatment on the tribological performance of amorphous carbon film are strongly dependent on the friction pairs. By specially probing into the effects of localized micro graphite bulges, possible friction reduction mechanisms are discussed.  相似文献   

3.
《Wear》2002,252(5-6):394-400
Cyclotriphosphazene lubricants were synthesized and the relationship between their structures and tribological properties was investigated using an optimol SRV oscillating friction and wear tester and one-way reciprocating friction tester. The elemental composition and chemical nature of the antiwear films generated on steel surface were analyzed on a scanning electron microscope with a Kevex energy dispersive X-ray analyzer attachment (SEM–EDS) and X-ray photoelectron spectrometer (XPS). It was found that aryloxyphosphazene with polar substituent as a lubricant of steel–steel and steel–aluminum pair gave low wear, while aryloxyphosphazene with nonpolar group on the phenyl pendant led to high wear. Phosphazene provides poor lubricity for the steel–aluminum system under low load (0.5–3 N). The XPS analytical results of the antiwear films generated on the steel and aluminum surface indicate that phosphazene reacted with steel or aluminum counterface and formed a surface protecting film consisting of fluoride and organic compounds containing O, C, F, N, and P during friction. This contributes to reduce the friction and wear of steel–aluminum system.  相似文献   

4.
张勇  彭一帆 《润滑与密封》2006,(4):48-50,54
与一般大型机械设备中的摩擦副不同,小尺度摩擦副润滑油膜在表面张力的作用下不再是水平形状,从而影响到摩擦副的摩擦学特性。在考虑到表面张力作用的基础上,对小尺度摩擦副进行摩擦学理论分析,建立了二维模型并求解了雷诺方程,以研究小尺度下表面张力对摩擦副摩擦学特性的影响。研究结果显示,由于表面张力的影响,摩擦副的油膜压力分布和承载能力有较大幅度的变化。宏观状态下的摩擦学设计与小尺度摩擦副的实际情况相去甚远,对小尺度摩擦副表面张力作用下的摩擦学特性进行研究是十分必要的。  相似文献   

5.
除材料本身特性外,外部因素如载荷、滑动速度、滑行距离、温度、环境以及摩擦方式等因素同样影响材料的摩擦磨损特性。本文探讨了外部因素对结构陶瓷摩擦磨损的影响,旨在促进在特定工况下正确使用相应的陶瓷材料作为摩擦学部件。  相似文献   

6.
Abstract

The aim of this research is to study the tribological behaviour of AISI 316L stainless steel for surgical implants (total hip prosthesis). The tribological behaviour is evaluated by wear tests, using tribometers ball on disc and sphere on plane. These tests consisted of measuring the weight loss and the friction coefficient of stainless steel (SS) AISI 316L. The oscillating friction and wear tests have been carried out in ambient air with an oscillating tribotester in accord with standards ISO 7148, ASTM G99-95a and ASTM G133-95 under different conditions of normal applied load (3, 6 and 10 N) and sliding speed (1, 15 and 25 mm s?1). A ball of 100Cr 6, 10 mm in diameter, is used as counter pairs. These tribological results are compared with those carried out with a tribometer type pin on disc under different conditions of normal load applied P (19·43, 28 and 44 N) and sliding speed (600 and 1020 rev min?1). The behaviour observed for both samples suggests that the wear and friction mechanism during the tests is the same, and to increase the resistance to wear and friction of biomedical SS AISI 316L alloy used in total hip prosthesis (femoral stems), surface coating and treatment are necessary.  相似文献   

7.
《Wear》1996,199(2):222-227
The tribological properties of K2Ti4O9 whisker reinforced Al20Si aluminum matrix composites were investigated in a mode of low amplitude reciprocal sliding. The ball-on-disk tests were performed at applied loads of 20–100 N and sliding velocity of 0.09 m s−1. The water lubricated composites demonstrated higher wear resistance and friction coefficient than the tetradecane lubricated composites did. The main wear mechanism is microgrooving at low applied loads and tribochemical wear at high applied loads for the pairs lubricated with water, microgrooving at all test loads for the pairs lubricated with tetradecane.  相似文献   

8.
The mechanical and tribological properties of amorphous carbon films have been studied in more detail in recent years because these films (a) can be deposited near room temperature, thus allowing film deposition on common engineering alloys (i.e., aluminum and steel) without altering their mechanical properties, and (b) are smooth and conform to surface roughness of the substrate, thus requiring no post deposition processing. In addition, amorphous carbon films exhibit low unlubricated sliding friction in contact with steel and ceramics which is comparable to that of steel against steel in a lubricated contact. The wear resistance of these films is also better than Ti‐based hard coatings. Further improvement in film tribological properties can be achieved by modifying film chemical composition. Because of these attractive features, amorphous carbon films have been evaluated in several applications including automotive, electronic and biomedical engineering. However, environmental factors such as oxygen and humidity have been found to influence tribological properties significantly. This paper reviews the current understanding of the tribological properties of both hydrogenated and non‐hydrogenated amorphous carbon films, the mechanisms responsible for low friction coefficient and identifies areas that require further research. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Butylammonium dibutylphosphate and tetrabutylammonium dibutylphosphate ionic liquids (ILs) were evaluated as antiwear additives for steel-on-aluminum contact in three different base oils, a polyalphaolefin, an ester oil and an IL 1-methy-3-hexylimidazolium hexafluorophosphate, respectively, with similar viscosity and different polarities. The friction experiments were carried out on an Optimal SRV-IV oscillating reciprocating friction and wear tester at room temperature. Results indicate phosphate ILs can effectively improve the tribological properties of the base oil, especially the antiwear property, as additives for steel/aluminum contacts. For the base oils PAO10 and PAO40 with different viscosities, the higher viscosity of PAO40 can be beneficial to reducing the friction coefficient. The worn surface morphologies and chemical compositions of wear scars were analyzed by a JSM-5600LV scanning electron microscope and PHI-5702 multifunctional X-ray photoelectron spectrometer (XPS). The XPS analysis results illustrate that the phosphate IL additives in the base oils with different polarities exhibit the same tribological mechanism. A synergy exists between the adsorbed layers and boundary-lubricating films generated from the tribochemical reaction of IL and the substrate surface, which may reduce the friction coefficient and wear volume of the friction pairs.  相似文献   

10.
In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3–Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics.  相似文献   

11.
《Wear》1996,193(1):99-104
The tribological properties of diol compounds in the sliding of steel against aluminum alloy were investigated using an oscillating friction and wear apparatus with the ball-on-block geometry. It was found that molecular structure of diols is important, e.g. 1,3-butanediol is most effective in reducing the friction and wear as compared with 2,3- or 1,4-substituted compounds. The relationship between the tribological properties of the lubricants and their chemical reactivity with aluminum was also found.  相似文献   

12.
In this paper, the tribological studies of diamond-like films under slip friction conditions are described. The films have been deposited from various materials (steel, aluminum, copper, and others). These films are deposited by the chemical vapor deposition method using a supersonic high-temperature plasma jet generated by a high-enthalpy plasmatron with a sectionalized interelectrode insert and a cold gas curtain for the walls of the discharge chamber. Tribological studies of the deposited films are performed using the friction simulator in the disc–ring system at rotational reverse motion. As a lubricant, 2% carboxymethylcellulose solution is used. Considerable differences in the tribological behavior depending on the substrate material, where the film has been deposited, are noted.  相似文献   

13.
为选择适合的高水基乳化液液压阀摩擦副材料,探讨ZrO2与不同结构陶瓷组成的摩擦副在高水基乳化液润滑状态下的摩擦磨损特性。采用摩擦磨损试验机,在不同载荷和滑动速度下,研究在高水基乳化液介质中4种不同陶瓷材料(ZrO2、Al2O3、Si3N4和SiC)分别与ZrO2配副的摩擦学性能,并探讨不同组合陶瓷摩擦副的磨损机制。结果表明:在高水基乳化液中,各陶瓷的摩擦因数均随着滑动速度的增大而降低,其中Al2O3陶瓷的摩擦因数最小;ZrO2、Al2O3和Si3N4陶瓷的摩擦因数受载荷的影响较小,SiC陶瓷的摩擦因数则随着载荷的增大而骤增;各陶瓷的磨损体积都随着速度和载荷的增大而增大,其中Al2O3/ZrO2陶瓷摩擦副的磨损体积最小,其磨损机制以磨粒磨损和微疲劳磨损为主。研究表明,在不同工况下,Al2O3与ZrO2陶瓷配副的摩擦因数和磨损体积均为最低值,更适合作为高水基乳化液液压阀的摩擦副材料。  相似文献   

14.
结构陶瓷具有高强度、耐高温和耐磨蚀等优点,作为摩擦学部件已得到广泛的应用。从陶瓷材料的显微结构讨论了陶瓷材料的摩擦磨损行为及机制,以促进正确设计和使用陶瓷材料作为摩擦学部件。  相似文献   

15.
As a result of an analysis of the literature data on ground–space tribological tests of friction couples with solid lubricant coating (SLC) ARSRI PP 212, the dependences for evaluating the starting antifriction characteristics have been determined. The wear life and coefficient of friction have been compared. According to results, calculation algorithms of tribological characteristics of friction couples with SLC for considered operational conditions have been developed and implemented.  相似文献   

16.
研究碳纤维/聚四氟乙烯(CF/PTFE)、玻璃纤维/聚四氟乙烯(GF/PTFE)复合材料与氮化硅陶瓷配副在海水环境下的摩擦学性能与润滑机制,分析滑动速度对摩擦副海水润滑性能的影响规律。结果表明:在海水润滑条件下,随着滑动速度的增加,PTFE、CF/PTFE、GF/PTFE材料与Si3N4陶瓷配副时的摩擦学性能均有明显改善,摩擦因数与磨损率均呈显著降低的趋势,其中CF/PTFE复合材料表现出更为优异的摩擦学性能,在1 000 r/min滑动速度下摩擦因数低至0.026。磨损表面表征结果表明,在海水润滑条件下,PTFE基复合材料在摩擦过程中由于摩擦化学反应生成了润滑膜,可为摩擦副提供良好的润滑和减磨作用,从而减少摩擦磨损行为的发生。  相似文献   

17.
It is well known that the wear and friction behavior of ceramics can be significantly improved by using them in water or humid air rather then a dry atmosphere. Accordingly, various ceramics have found many water-lubricated applications. In spite of this, the effect of the pH of the aqueous media on the wear and friction behavior has not been investigated in detail. In this study, we have investigated the wear behavior of alumina ceramics in different water-lubricated conditions with a range of pH values from 0.85 to 13. Based on the results of reciprocating sliding tests, we found that the wear can vary by as much as one order of magnitude and the coefficient of friction between 0.2 and 0.6, depending on the conditions. We also observed that significantly different wear surfaces are generated for different pH values, and these surfaces have a diverse effect on the wear and friction behavior. Wear mechanisms were established by employing surface topography analyses and scanning electron microscopy (SEM). The chemical and electrochemical effects under the selected tribological conditions are discussed to help explain the observed behavior. Our findings suggest that by varying the pH of a solution we can obtain low-wear and/or high-wear of alumina ceramics to suit the requirements of the process.  相似文献   

18.
With the aim to investigate repeated braking of organic–metal brake pairs, tribological and scanning electron microscopy (SEM) experiments were performed to reveal the influence of a magnetic field on the tribological performance of brakes. A nonasbestos copper-based brake pad and gray cast iron brake disc were selected as the brake pair. The X-DM pad-on-disc friction tester was improved to set up a tribological tester under a magnetic field. The worn surfaces were observed by SEM to reveal the friction mechanisms. It was found that a magnetic field can ameliorate the dynamic friction and wear. In addition, the global mean friction coefficient increases and the wear resistance of brake materials improves. A magnetic field promotes surface oxidation and aggravates the surface heat emission condition. As a result, the mean temperature on the friction surface increases obviously. An appropriate magnetic field can improve the dynamic temperature rise and decrease the global temperature rise on the friction surface. It is considered that a magnetic field has important influences on tribological performance in repeated braking. Therefore, this research could provide theoretical references for studying the tribological performance in repeated braking and/or under a magnetic field.  相似文献   

19.
The goal of this work was to assess the suitability of a commercial synthetic skin to simulate occluded human skin friction behavior in dry and moist skin conditions and under different applied surface pressures, with the view to using this material as a tribological test bed for health care and personal care devices that are in direct contact with the skin during use. A flat rotating ring friction measurement device, in which one part of the skin surface is continuously covered (i.e., occluded), was used to compare the friction behavior of human skin and the synthetic skin in controlled nominally dry and nominally moist skin conditions. Three loading levels were tested, simulating light, medium, and high skin pressures typical of many lifestyle- and personal health–related applications. The results showed that the friction behavior of the synthetic skin tested was notably different to that of human skin in vivo in terms of the effects of skin hydration, sliding time, and applied surface pressure. It is concluded that, for use as a tribological test bed, the tested synthetic skin model does not provide an acceptable alternative to in vivo tests using human skin.  相似文献   

20.
In modern industries, more and more mechanical components are exposed to mixed and even boundary lubrication conditions, inducing fast wear and even scuffing of the motion systems. In order to enhance the lifetime and reliability of the motion systems, replacing metal–metal friction pairs by metal–polymer ones can be one of the most effective approaches. The present work focuses on tribological behavior of pure polyetheretherketone (PEEK) and a formulated PEEK composite lubricated with diesel and engine oil. It was demonstrated that in mixed and boundary lubrication regimes the structure of PEEK materials affect significantly the tribological performance. Formation of a tribofilm on the surface of metallic counterbody plays an important role on the tribological behavior of the PEEK-based materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号