首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tribological behaviors and the relevant mechanism of a highly pure polycrystalline bulk Ti3AlC2 sliding dryly against a low carbon steel disk were investigated. The tribological tests were carried out using a block-on-disk type high-speed friction tester, at the sliding speeds of 20–60 m/s under a normal pressure of 0.8 MPa. The results showed that the friction coefficient is as low as 0.1∼0.14 and the wear rate of Ti3AlC2 is only (2.3–2.5) × 10−6 mm3/Nm in the sliding speed range of 20–60 m/s. Such unusual friction and wear properties were confirmed to be dependant dominantly upon the presence of a frictional oxide film consisting of amorphous Ti, Al, and Fe oxides on the friction surfaces. The oxide film is in a fused state during the sliding friction at a fused temperature of 238–324 °C, so it takes a significant self-lubricating effect.  相似文献   

2.
Synthesis and tribological evaluation of three tetraalkylammonium thiomolybdate (R4N)2MoS4 (R = methyl, propyl, or ammonia) aqueous-based lubricant additives on a ball-on-disk tribometer was carried out for a steel–aluminum contact. Tests were performed at the same conditions of load, entrainment speed, sliding distance, temperature, and concentration of MoS2 to compare the activity (lubrication effect) of the thiomolybdates prepared. A friction reduction is observed for the three salts compared to pure water; however, significant differences in friction coefficient are observed depending on the alkyl group. SEM/EDAX and Raman analysis of the wear tracks reveal the in-contact formation of a MoS2-lubricating film, rich in molybdenum and sulfur.  相似文献   

3.
The tribological properties of liquid paraffin (LP) containing molybdenum disulfide (MoS2) additives, including nano-balls, nano-slices, and bulk 2H-MoS2, are evaluated using a four-ball tribometer. Results show that all MoS2 additives used can improve the tribological properties of LP, and that nanosized MoS2 particles function as lubrication additives in LP better than micro-MoS2 particles do. The LP with nano-balls presents the best antifriction and antiwear properties at the MoS2 content of 1.5 wt%. This is ascribed to the chemical stability of the layer-closed spherical structure of nano-balls. The Stribeck curves confirm that the rotation speed of 1,450 rpm used is located at the mixed lubrication region under 300 N. MoS2 nano-slices have small sizes and easily enter into the interface of the friction pair with a roughness of 0.032 μm, functioning as a lubricant in LP better than nano-balls do at the MoS2 content of 1.0 wt%. The Stribeck curves also show that the differences between the two nano samples were magnified at high rotation speeds in hydrodynamic lubrication region. The application of nano-slices in high sliding speeds will be more advantageous. This work furthers the understanding of the relationship between the tribological properties and morphology of MoS2.  相似文献   

4.
Molybdenum disulfide (MoS2) and molybdenum trioxide are investigated using Raman spectroscopy with emphasis on the application to tribological systems. The Raman vibrational modes were investigated for excitation wavelengths at 632.8 and 488 nm using both micro-crystalline MoS2 powder and natural MoS2 crystals. Differences are noted in the Raman spectra for these two different wavelengths, which are attributed to resonance effects due to overlap of the 632.8 nm source with electronic absorption bands. In addition, significant laser intensity effects are found that result in laser-induced transformation of MoS2 to MoO3. Finally, the transformation to molybdenum trioxide is explored as a function of temperature and atmosphere, revealing an apparent transformation at 375 K in the presence of oxygen. Overall, Raman spectroscopy is an useful tool for tribological study of MoS2 coatings, including the role of molybdenum trioxide transformations, although careful attention must be given to the laser excitation parameters (both wavelength and intensity) when interpreting Raman spectra.  相似文献   

5.
The paper presents an explanation of the improved antifriction properties of MoS2 in vacuum compared to their properties in air. It is shown that the effect of superlow friction upon intensive irradiation results from the formation of a “two-dimensional gas” consisting of sulfur atoms knocked out of their positions. The possibility of the alloying of MoS2 by elements which do not react with sulfur is analyzed. The alloying of MoS2 coatings by an excess number of sulfur atoms to realize the effect of superlow friction in vacuum and air is substantiated.  相似文献   

6.
MoS x /MoS x -Mo multi-layer films consisted of several bilayers and a surface layer on steel substrate were deposited by d.c. magnetron sputtering at different deposition pressures. Each bilayer contained a MoS x layer with 80 nm in thickness and a MoS x -Mo composite layer with 20 nm in thickness. With the increase of deposition pressure, the perpendicular orientation of the basal plane prevailed while the parallel orientation decreased. The tribological properties of the multi-layer films were investigated by using a ball-on-disk tribometer both in vacuum and in humid air. The multi-layer film deposited at 0.24 Pa had a compact, consistent layered structure with high intensity of (002) plane and low S content compared to the others deposited at 0.32 and 0.40 Pa, and showed the lowest friction coefficient and wear rate in humid air.  相似文献   

7.
Using a new quartz-made reactor, large amounts of fullerene-like (IF) MoS2 nanoparticles were synthesized by reacting MoO3 vapor with H2S in a reducing atmosphere. The nanoparticles were found to be of high crystalline order; with an average size of 70 nm and consist of more than 30 closed shells. Extensive tribological testing of the nanoparticles in two types of synthetic oils- poly-alpha olefins (PAO)- was carried out and compared to that of bulk (2H platelets) MoS2 and IF-WS2. These tests indicated that under high pressure and relatively low humidity, the IF-MoS2 exhibited a friction coefficient as low as 0.03 and the smallest wear rate of the measured systems. However, its performance was found to be lower in comparison to IF-WS2 after 2500 cycles, due probably to its inferior chemical stability. This study indicates that the tribological performance of the IF nanoparticles depends strongly on their crystalline order and size.  相似文献   

8.
The self-lubricating composites Ni3Al–BaF2–CaF2–Ag–Cr, which have varying fluoride contents, were fabricated by the powder metallurgy technique. The effect of fluoride content on the mechanical and tribological properties of the composites was investigated. The results showed that an optimal fluoride content and a balance between lubricity and mechanical strength were obtained. The Ni3Al–6.2BaF2–3.8CaF2–12.5Ag–10Cr composite showed the best friction coefficients (0.29–0.38) and wear rates (4.2 × 10−5–2.19 × 10−4 mm3 N−1 m−1) at a wide temperature range (room temperature to 800°C). Fluorides exhibited a good reduced friction performance at 400 and 600°C. However, at 800°C, the formation of BaCrO4 on the worn surface due to the tribo-chemical reaction at high temperatures provided an excellent lubricating property.  相似文献   

9.
Tribological properties of TiO2 coatings synthesized by micro-arc oxidation (MAO) on the surface of TC4 titanium alloys were investigated at the fretting contact against 440C stainless steel in simulated body fluid (SBF). Fretting experiments were carried out by ball-on-flat contact at various loads for 1 h, with an amplitude of 100 μm and a frequency of 5 Hz. Results show that MAO TiO2 coatings presented good tribological properties with lower friction coefficient in SBF. Less wear volume was observed for MAO TiO2 coatings compared with that for TC4 alloy. At lower load, the wear mechanism of MAO TiO2 coatings was dominated to abrasive wear. With an increase of normal load, however, fretting corrosion increased due to chemical reactions with SBF, and therefore, fretting fatigue coexisting with abrasive wear became the predominant mode.  相似文献   

10.
The novel Ta2AlC–20 vol.% Ag (TaAg) and Cr2AlC–20 vol.% Ag (CrAg) composites were tribologically tested versus a Ni-based superalloy Inc718 (SA) by dry sliding at a sliding speed of 1 m/s at room temperature in air at loads from 3 N to 18 N. The TaAg composites were also tested at 8 and 18 N at 550 °C, and at a 3 N load against the SA with different surface roughnesses at 26 °C and 550 °C. At room temperatures, the coefficients of friction, μ’s, decreased from ~0.8–0.9 to ~0.3–0.4 for both the TaAg and CrAg composites as the applied normal force increased from 3 N to 8 N. Further increases in load to 18 N did not change the μ’s. The specific wear rates, sWR, increased with increased loads for the TaAg composite; they remained almost unchanged for the CrAg composite. This behavior was attributed to the formation of glaze tribofilms—similar to ones observed previously in these tribocouples at elevated temperatures and 3 N—promoted by the increased loads. Preconditioning of the SA surface by sliding against the TaAg composite at 550 °C and 8 N resulted in μ’s of <0.2 and sWR < 10−6 mm3/N-m in subsequent room temperature sliding at 3 N. Somewhat higher, but stable room temperature μ’s of ~0.3 and sWR of ~3 × 10−5 mm3/N-m were observed when the TaAg composites were slid versus a sandblasted SA surface at 500 °C and 3 N. It follows that in situ preconditioning of the tribo-surfaces is a powerful tool for improving the properties of the MAX/Ag-SA tribocouples. The relationship between sliding conditions, chemistries of tribofilms, and their properties are discussed.  相似文献   

11.
Nanotribological properties of NbSe2 are studied using an atomic friction force microscope. The friction force is measured as a function of normal load and scan speeds ranging from 10 nm s−1 to 40 μm s−1 under two atmospheres (air and argon). At low speed, no effect of atmosphere is noticed and a linear relationship between the friction and normal forces is observed leading to a friction coefficient close to 0.02 for both atmospheres. At high speed, the tip/surface contact obeys the JKR theory and the tribological properties are atmosphere dependent: the shear stress measured in air environment is three times lower than the one measured under argon atmosphere. A special attention is paid to interpret these results through numerical data obtained from a simple athermal model based on Tomlinson approach.  相似文献   

12.
Inorganic fullerene-like (IF) MoS2 nanoparticles with diameters ranging from 70 to 120 nm were synthesized by desulphurizing the MoS3 precursor and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tribological properties of the IF–MoS2, as lubricating oil additive, were evaluated using a MMW-1 four-ball tribotester. The wear scar was examined with an optical microscope and scanning electron microscopy (SEM). The wear resistance of the paraffin oil was improved and the friction coefficient of the oil was decreased by addition of the IF–MoS2 nanoparticles. The mechanism of friction and wear of the IF–MoS2 nanoparticles was discussed.  相似文献   

13.
The Ni3Al matrix composites with addition of 10, 15, and 20 wt% BaMoO4 were fabricated by powder metallurgy technique, and the tribological behaviors were studied from room temperature to 800 °C. It was found that BaAl2O4 formed during the fabrication process. The Ni3Al composites showed poor tribological property below 400 °C, with high friction coefficients (above 0.6) and wear rates (above 10−4 mm3/Nm). However, the composites exhibited excellent self-lubricating and anti-wear properties at higher temperatures, and the composite with addition of 15 wt% BaMoO4 had the lowest wear rate (1.10 × 10−5 mm3/Nm) and friction coefficient (0.26). In addition, the results also indicated that BaAl2O4 for the Ni3Al composites did not exhibit lubricating property from room temperature to 800 °C.  相似文献   

14.
MoS2 hollow spheres with an average diameter of 165 nm were prepared from Na2MoO4 and CH3CSNH2 at 82 °C. A simple method was used to obtain smaller hollow spheres (70 nm) without any complicated step, except for the addition of TiO2. The tribological properties of MoS2/TiO2 in rapeseed oil were studied using a four-ball tribometer under 350 N at 0.383 m/s. The effects of load and sliding velocity were also investigated. Wear was significantly alleviated by the produced lubricating film as lubricated with MoS2/TiO2, which was composed of MoO3, Fe2O3, Fe2(SO4)3, TiO2 (trace), and carbon-containing compounds. The tribological properties were also improved because of the decrease in the size of MoS2 and the synergistic effect between MoS2 and TiO2.  相似文献   

15.
MoS2–Sb2O3–C composite films exhibit adaptive behavior, where surface chemistry changes with environment to maintain the good friction and wear characteristics. In previous work on nanocomposite coatings grown by PVD, this type of material was called a “chameleon” coating. Coatings used in this report were applied by burnishing mixed powders of MoS2, Sb2O3 and graphite. The solid lubricant MoS2 and graphite were selected to lubricate over a wide and complementary range including vacuum, dry air and humid air. Sb2O3 was used as a dopant because it acts synergistically with MoS2, improving friction and wear properties. The MoS2–Sb2O3–C composite films showed lower friction and longer wear life than either single component MoS2 or C film in humid air. Very or even super low friction and long wear-life were observed in dry nitrogen and vacuum. The excellent tribological performance was verified and repeated in cycles between humid air and dry nitrogen. The formation of tribo-films at rubbing contacts was studied to identify the lubricating chemistry and microstructure, which varied with environmental conditions. Micro-Raman spectroscopy and Auger electron spectroscopy (AES) were used to determine surface chemistry, while scanning electron microscopy and transmission electron microscopy were used for microstructural analysis. The tribological improvement and lubrication mechanism of MoS2–Sb2O3–C composite films were caused by enrichment of the active lubricant at the contact surface, alignment of the crystal orientation of the lubricant grains, and enrichment of the non lubricant materials below the surface. Sb2O3, which is not lubricious, was covered by the active lubricants (MoS2 – dry, C – humid air). Clearly, the dynamics of friction during environmental cycling cleaned some Sb2O3 particles of one lubricant and coated it with the active lubricant for the specific environment. Mechanisms of lubrication and the role of the different materials will be discussed.  相似文献   

16.
Molybdenum disulfide (MoS2) has been widely used in vacuum environment as an excellent solid lubricant. However, the application of MoS2 is greatly limited in terrestrial atmosphere due to the sensitivity to humidity. Although the sensitivity of MoS2 to water vapor has been widely recognized, the mechanism is not clear. To explore the tribological mechanism of MoS2 in the presence of water vapor, a series of experiments were performed to investigate the effect of N2 (inert gas), O2 (active gas), air (a combination of both) and cyclic humidity change in air on the frictional response of MoS2 to humidity. According to the results, a model that described water adsorption enhanced by active sites in MoS2 and formed oxides, and an adsorption action change in water molecules with humidity was proposed. The model was applied to explain the recovery and instantaneous response of friction coefficient to humidity change.  相似文献   

17.
Anatase (TiO2) nanoparticles with an average diameter of 10 nm were synthesized by solvothermal method followed by surface modification with stearic acid (SA). As-prepared, the nanoparticles (SA-TiO2) were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry (TGA) and differential scanning calorimetry (DSC). The tribological properties of SA-TiO2 as an additive of liquid paraffin (LP) were evaluated by a four-ball tester. The results show that LP with SA-TiO2 exhibited good anti-wear and friction-reduction properties under the all applied loads. Comparing LP with LP-containing SA, LP-containing TiO2, and LP-containing SA-TiO2, the LP-containing SA-TiO2 had the best load-carrying capacity. It was deduced that the boundary lubricating film was mainly composed of TiO2 deposits and an adsorbing film of SA which contribute to the excellent lubricating effect of SA-TiO2 in LP.  相似文献   

18.
Tribological properties of TiO2 sol–gel thin films with mutually soluble dopants were studied on a glass substrate. The results showed that the formation of mutually soluble solid solution played a very important role in the growth of titania grains. The fine-grained TiO2 films controlled by SiO2 dopant were superior to pure TiO2 film in wear resistance and endurance life, although both films greatly improve the surface characteristics of glass substrate, enhancing its tribological characteristics. High resistance to microfracture because of the very small grain size as well as a good adhesion of the film to the substrate is believed to be the determining factors influencing the tribological properties of SiO2 doped TiO2 films. However, excessive SiO2 seriously deteriorates wear resistance of film due to phase separation. The wear mechanisms were also discussed based on the observation of the surface morphologies by scanning electron microscope (SEM).  相似文献   

19.
A bulk Fe67B33 alloy was prepared by a self-propagating high-temperature synthesis technique that is convenient, low in cost, and capable of being scaled up for tailoring the bulk materials. The Fe67B33 alloy is composed of dendrites with the t-Fe2B phase and eutectic matrix with the α-Fe and t-Fe2B phases. The content of the dendrite t-Fe2B is above 80 vol.%. The compressive fractured strength and Vickers microhardness are 3400 MPa and 12.4 GPa, respectively. The tribological performance of the Fe67B33 alloy is investigated under dry sliding and water lubricant against Si3N4 ceramic ball. The wear rates of the Fe67B33 alloy are of the magnitude of 10−5 to 10−4 mm3/m under water lubricant. It is lower than that of the Fe67B33 alloy under dry sliding (10−4 mm3/m). But both the friction coefficients are almost identical. Oxide layers form in both environments via different tribochemical mechanisms, which led to significant differences in wear behavior.  相似文献   

20.
The nanoscale lubrication mechanism of nanocomposite Au/MoS2 solid lubricant coatings has been studied by conductive atomic force microscopy (c-AFM). A direct visualization of the lubricating process suggests tribomechanical formation of a MoS2 tribofilm to be a key mechanism. The sliding-induced tribofilm formation was visualized by a reduction in local friction and conductivity in nanoscale AFM images. The tribofilm was found to possess considerable crystallinity and orientation, which was not observed in the as-deposited coatings. The observed mechanism is broadly applicable to a range of nanocomposite metal/MoS2 coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号