首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Radio transceivers are the main source of energy consumption in wireless sensor networks (WSNs) where the source of energy supply is non-rechargeable battery. Several MAC protocols have been proposed in order to efficiently conserve energy in the link layer via duty-cycling. Low power listening (LPL) methods have been shown to outperform other schemes in lightly loaded situations which are common in environment monitoring applications. Nonetheless, as the network becomes dense, in LPL protocols such as BMAC a large number of nodes stay awake for each transmission, resulting in high levels of energy consumption. This paper introduces the informative preamble sampling (IPS) protocol in which a transmitter implicitly embeds information about its intended receiver via the power at which the preamble is transmitted. This results in far fewer nodes staying awake for each preamble. Upon hearing the preamble, a receiver executes a decision-making algorithm to decide whether to stay awake. If the decision-making algorithm is too lax, then more nodes stay awake following the preamble. On the other hand if the algorithm is too strict, it is likely that the intended receiver misses the preamble. In this paper we derive the optimal operating points for the IPS protocol. We show analytically that the IPS protocol can achieve a gain in energy by at least a factor of 2 over BMAC. We also conduct extensive simulations to show that IPS can achieve significant energy gains compared to BMAC.  相似文献   

2.
Multiple antenna transmission and reception have been shown to significantly increase the achievable data rates of wireless systems. However, most of the existing analysis assumes perfect or no channel information at the receiver and transmitter. The performance gap between these extreme channel assumptions is large and most practical systems lie in between. Therefore, it is important to analyze multiple antenna systems in the presence of partial channel information. We upper bound the outage probability performance of multiple antenna systems with preamble-based channel estimation and quantized feedback. We design causal feedback and power control schemes to minimize this upper bound on outage probability. We consider the following practical issues in our analysis and design: (1) the channel information is imperfect both at the receiver and at the transmitter and (2) part of the total available resources for the system need to be used for estimation and feedback. Our results demonstrate that for block fading channels, sending a periodic preamble and causally receiving channel state information via a feedback channel can lead to substantial gains in the outage performance over any nonfeedback scheme. Most of the gains achieved by perfect feedback can be achieved by very few bits of feedback. Furthermore, it is demonstrated that these outage probability gains can be translated into improvements in frame error rate performance of systems using space-time codes. Thus, implementing a power control, even at the cost of reduced spectral resources for the forward channel is beneficial for block fading channels  相似文献   

3.
To design a reliable and energy efficient medium access control (MAC) protocol for underwater wireless sensor networks (UWSNs) is an active research area due to its variety of applications. There are many issues associated with underwater acoustic channels including long and variable propagation delay, attenuation, and limited bandwidth which pose significant challenges in the design of MAC protocol. The available sender‐initiated asynchronous preamble‐based MAC protocols for UWSNs are not reliable and energy‐efficient. This is due to the problems caused by transmission of preambles for longer duration and collision of preambles from hidden nodes in sender‐initiated preamble‐based MAC protocols. To resolve these issues, the paper proposed an asynchronous receiver‐initiated preamble‐based MAC protocol named Receiver Preambling with Channel Polling MAC (RPCP‐MAC) protocol for shallow underwater monitoring applications with high data rates. The protocol is proposed to resolve data packet collision and support reliability in an energy‐efficient way without using any transmission schedule. The proposed protocol is based on the following mechanisms. Firstly, receiver preambling mechanism is adopted to reduce idle listening. Secondly, channel polling mechanism is used to determine missing data frame during its sleeping period and to minimize the active time of node and reduces energy wastage. Finally, a back‐off mechanism is applied to resolve collision when preambles are received simultaneously. In addition, performance analysis through Markov chain together with its validation with simulation‐based studies is reported in the paper. Both the analytical and simulation results have demonstrated the reliability achievable with RPCP‐MAC while providing good energy efficiency.  相似文献   

4.
A reservation-based multicast protocol for WDM optical star networks   总被引:1,自引:0,他引:1  
In this paper, we present a reservation-based medium access control (MAC) protocol with multicast support for wavelength-division multiplexing networks. Our system is based on the single-hop, passive optical star architecture. Of the available wavelengths (channels), one channel is designated as a control channel, and the remaining channels are used for data transmission. Each node is equipped with a pair of fixed transceiver to access the control channel, and a fixed transmitter and a tunable receiver to access data channels. For easy implementation of the protocol in hardware and for precisely computing the protocol's processing overhead, we give a register-transfer model of the protocol. We simulate the protocol to study its throughput behavior, and present its analytic model. For a node to be able to send data packets in successive data slots with no time gap between them, in spite of the situation that the protocol's execution time may be longer than data transmission time, we propose the idea of multiple MAC units at each node. Unicast throughput of our protocol reaches the theoretically possible maximum throughput for MAC protocols with distributed control, and the multicast throughput is at least as good as, and even better than, those delivered by existing MAC protocols with distributed control.  相似文献   

5.
Diffusion‐based communication is one of the most dominating forms in the micrometer and nanoscale communications. Generally, information is coded in molecules that are released by a transmitter nanomachine, propagated via a diffusion‐based channel, and then received by a receiving nanomachine (called receiver). The receiver considered in this paper is equipped with multiple ligand receptors. The molecular communication system in this paper is single hop and SISO. Namely, there is only a channel connecting a pair of transmitter and receiver. While most literature considers either the channel or the receptors, this paper proposes a channel model that takes into account both the diffusion‐based channel and the ligand‐based receiver. The channel capacity under such model is analyzed, which studies the impact of different parameters at both channel and the receiver on the performance of the molecular communication system. We establish a digital channel model based on the on–off keying and time slot scheme. A capacity expression is derived with consideration of the effects of the channel memory and ligand‐receptor binding mechanisms. The numerical results show that the overall channel capacity is restricted by the physical parameters of diffusion channel and ligand receptors. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.

The wireless sensor network based IoT applications mainly suffers from end to end delay, loss of packets during transmission, reduced lifetime of sensor nodes due to loss of energy. To address these challenges, we need to design an efficient routing protocol that not only improves the network performance but also enhances the Quality of Service. In this paper, we design an energy-efficient routing protocol for wireless sensor network based IoT application having unfairness in the network with high traffic load. The proposed protocol considers three-factor to select the optimal path, i.e., lifetime, reliability, and the traffic intensity at the next-hop node. Rigorous simulation has been performed using NS-2. Also, the performance of the proposed protocol is compared with other contemporary protocols. The results show that the proposed protocol performs better concerning energy saving, packet delivery ratio, end-to-end delay, and network lifetime compared to other protocols.

  相似文献   

7.
Capacity bounds and power allocation for wireless relay channels   总被引:9,自引:0,他引:9  
We consider three-node wireless relay channels in a Rayleigh-fading environment. Assuming transmitter channel state information (CSI), we study upper bounds and lower bounds on the outage capacity and the ergodic capacity. Our studies take into account practical constraints on the transmission/reception duplexing at the relay node and on the synchronization between the source node and the relay node. We also explore power allocation. Compared to the direct transmission and traditional multihop protocols, our results reveal that optimum relay channel signaling can significantly outperform multihop protocols, and that power allocation has a significant impact on the performance.  相似文献   

8.
In wireless sensor networks, power consumption is one of the key design issues because a large number of sensor nodes are powered by cheap batteries. Switching the RF transceiver, which is one of the biggest power consumers in a sensor node, to low-power sleep mode as much as possible has been proven to be a very efficient way to save power with a factor of tens or even hundreds. So far, several schemes have been proposed to reduce the duty cycle of the RF transceiver by MAC layer scheduling. Among them, the wake-up-frame scheme and the WiseMAC are two very efficient protocols based on the so-called preamble sampling technology. This paper proposes combining these two schemes to obtain a further optimized low-power MAC protocol, called SyncWUF, for low-traffic wireless sensor network. Analytical and simulation results prove that our proposal achieves significant battery lifetime gain in different application cases without negatively affecting other important system parameters such as channel capacity and latency  相似文献   

9.
Although there are many MAC protocols that have been proposed for terrestrial wireless networks with a wide variety of aspects, these protocols cannot be applied directly in underwater acoustic networks due to the channel's uniqueness of having low data rate and long propagation delay. In order to achieve a high throughput, both characteristics must be taken into account in the MAC design. We propose a random access MAC protocol for multi-hop underwater acoustic networks based on receiver reservation, which we shall call the "Receiverinitiated Packet Train" (RIPT) protocol. It is a handshakingbased protocol that addresses the channel?s long propagation delay characteristic by utilizing receiver-initiated reservations, as well as by coordinating packets from multiple neighboring nodes to arrive in a packet train manner at the receiver. Our simulation results have confirmed that the RIPT protocol can achieve our goal of having high and stable throughput performance while maintaining low collision rate.  相似文献   

10.
In a multiwavelength optical network with tunable transceivers, an algorithm to make the transmitter and the receiver tuned to the same wavelength simultaneously is needed. The paper proposes contention-based reservation protocols using a separate control channel for multiwavelength optical networks with a passive star topology. First, they present a protocol which can be used in the network where the ratio of the end-to-end signal propagation delay to the transmission time of a data packet is smaller than 1. Also, for a very high speed network where this ratio is greater than 1, the authors present three protocols according to the variability of the packet length and the buffering of the reservation. To access the control channel, all the proposed protocols use the slotted ALOHA protocol. The authors analyze these protocols with a finite population model and investigate the delay-throughput characteristics  相似文献   

11.
Broadband MIMO-OFDM wireless communications   总被引:48,自引:0,他引:48  
Orthogonal frequency division multiplexing (OFDM) is a popular method for high data rate wireless transmission. OFDM may be combined with antenna arrays at the transmitter and receiver to increase the diversity gain and/or to enhance the system capacity on time-varying and frequency-selective channels, resulting in a multiple-input multiple-output (MIMO) configuration. The paper explores various physical layer research challenges in MIMO-OFDM system design, including physical channel measurements and modeling, analog beam forming techniques using adaptive antenna arrays, space-time techniques for MIMO-OFDM, error control coding techniques, OFDM preamble and packet design, and signal processing algorithms used to perform time and frequency synchronization, channel estimation, and channel tracking in MIMO-OFDM systems. Finally, the paper considers a software radio implementation of MIMO-OFDM.  相似文献   

12.
In this letter, we investigate the power minimization problem while supporting the required reliability in wireless multi-hop relay networks. The novelty of the formulation is that it assumes a generalized relation between the power consumed in the transmitter and the packet reception rate in the receiver and, in addition, it takes into consideration the error detection capability of each relay node that can prevent unnecessary error propagation. We derive the optimality condition and provide a method that determines the optimal transmission power of each relay node sequentially. Numerical examples reveal that the optimal power allocation renders notable power saving effect while supporting the required level of reliability.  相似文献   

13.
Carrier frequency offset (CFO) due to Doppler frequency shift or frequency mismatch between the transmitter’s and receiver’s oscillators can introduce severe inter-symbol and inter-carrier interference into OFDM systems. A simplified OFDM system model is considered to analyze effects of CFO in theory and simulation. The article briefly reviews some traditional CFO estimation algorithms. Relying on relatively good correlation characteristic of pseudo-noise (PN) sequence, the PN preamble based algorithm of CFO estimation is developed. Performance characteristics of traditional and the new improved algorithms are simulated under different conditions. Results indicate that the PN preamble based algorithm of CFO estimation is more accurate, resource-saving and robust even under poor communications channel condition, such as low SNR and big normalized CFO.  相似文献   

14.
In this paper we present formulas for the computation of error probability in the presence of quadrature-channel or adjacentchannel interference in addition to intersymbol interference in a minimum shift keying system. The filters in the receiver and transmitter are arbitrary but with a finite number of poles. The effect of phase jitter in the main channel, phase and symbol timing misalignment in the interfering channels, and sampling time jitter is taken into account. The probability of error is averaged over the phase and symbol timing misalignment. Numerical results are presented for Butterworth filters in the receiver and transmitter with two, three, and four poles. Curves of error probability as a function of various variables (signal-to-noise ratio, bandwidth of receiver and transmitter filters, number of poles, channel frequency separation, phase jitter, sampling time, and symbol timing and phase misalignment) are presented. The method of this paper can readily be applied to other filters; hence, it can be used in the design and prediction of the performance of digital communication systems.  相似文献   

15.
We analyze the error floor of unequalized personal communications systems using minimum-shift keying (MSK) with training-sequence-based adaptive sampling in a two-delay fading channel. We include Gaussian filtering of the input, finite accuracy in determining the optimum sampling time, and filtering at the receiver. We prove that for pure MSK and low time dispersion, training-sequence-based adaptive sampling can completely avoid errors caused by intersymbol interference. The actual errors are caused by “secondary” effects (filtering and finite-resolution sampling) in conjunction with the channel time dispersion. Errors occur if the normalized phasor of the channel impulse response falls into certain error regions; the computation of these regions gives physical insights into the error mechanism and allows a highly efficient computation of the average bit-error rate (BER). The average BER varies as K·(S/T)2, where S is the RMS delay spread and T is the bit length. The proportionality constant K depends on the Gaussian filtering in the transmitter, the receiver filtering, and the amount of oversampling. The BER can be orders of magnitude lower than for the (quasi-) fixed sampling case, in which timing is derived solely based on the channel delay power profile. For two-branch diversity reception, we show that the BER is proportional to (S/T)4  相似文献   

16.
Marc Kimpe  Harry Leib 《电信纪事》1997,52(5-6):251-263
This paper describes a computer tool for site specific indoor radio channel characterization. The behavior of the electromagnetic fields associated with a base station and a portable radio unit is simulated by combining approximate geometric optics and ray tracing techniques. Given a building plan and the transmitter/receiver locations, the set of all[attenuation / time delay /phase] vectors, each representing an electromagnetic propagation path between transmitter and receiver, is computed using ray shooting techniques to generate the channel wideband impulse response. The model takes into account specular reflection and transmission. Linear polarization and various antenna patterns can be simulated as well. The simulated results are shown to correlate well with experimental data. The computer tool can be used to provide estimates of the coverage of a base station and of the channel quality.  相似文献   

17.
Information theoretic considerations for cellular mobile radio   总被引:3,自引:0,他引:3  
We present some information-theoretic considerations used to determine upper bounds on the information rates that can be reliably transmitted over a two-ray propagation path mobile radio channel model, operating in a time division multiplex access (TDMA) regime, under given decoding delay constraints. The sense in which reliability is measured is addressed, and in the interesting eases where the decoding delay constraint plays a significant role, the maximal achievable rate (capacity), is specified in terms of capacity versus outage. In this case, no coding capacity in the strict Shannon sense exists. Simple schemes for time and space diversity are examined, and their potential benefits are illuminated from an information-theoretic stand point. In our presentation, we chose to specialize to the TDMA protocol for the sake of clarity and convenience. Our main arguments and results extend directly to certain variants of other multiple access protocols such as code division multiple access (CDMA) and frequency division multiple access (FDMA), provided that no fast feedback from the receiver to the transmitter is available  相似文献   

18.
This paper considers joint transceiver designs for single-user multiple-input, multiple-output systems employing improper constellations such as binary phase shift-keying and M-ary amplitude shift-keying (M-ASK). Proposed are novel joint linear transceivers that minimize the total mean squared error of the symbol estimation at the output of the decoder. The joint linear transceiver designs are carried out for both cases of perfect channel state information (CSI) and imperfect CSI at the transmitter and receiver. For the case of imperfect CSI, the channel model takes into account both transmit and receive correlations as well as the channel estimation error. The superiority of the proposed transceivers over the previously-proposed designs is verified by simulation results.  相似文献   

19.
Duty cycling is a fundamental approach used in contention‐based medium access control (MAC) protocols for wireless sensor networks (WSNs) to reduce power consumption in sensor nodes. Existing duty cycle‐based MAC protocols use either scheduling or low‐power listening (LPL) to reduce unnecessary energy lost caused by idle listening and overhearing. This paper presents a new asynchronous duty‐cycled MAC protocol for WSN. It introduces a novel dual preamble sampling (DPS) approach to efficiently coordinate channel access among nodes. DPS combines LPL with a short‐strobed preamble approach to significantly reduce the idle‐listening issue in existing asynchronous protocols. We provide detailed analysis of the energy consumption by using well‐known energy models and compare our work with B‐MAC and X‐MAC, two most popular asynchronous duty cycle‐based MAC protocols for WSNs. We also present experimental results based on NS‐2 simulations. We show that depending on the traffic load and preamble length, the proposed MAC protocol improves energy consumption significantly without degrading network performances in terms of delivery ratio and latency. For example, for a traffic rate of 0.1 packets/s and a preamble length of 0.1 s, the average improvement in energy consumption is about 154%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we derive a simple expression for the degradation in signal-to-noise ratio caused by intersymbol and adjacent channel interference in MSK systems for which the total response is nonnegative and the response is such that only two intersymbol and one adjacent channel terms are dominant. An MSK system with Gaussian filters in transmitter and receiver satisfy this condition. The resulting expression is simple because we simultaneously maximize the signal value from the main channel (by selecting the sampling time) and the degradation caused by the signals in the interfering channels. For such systems we derive the relation between the optimal filter bandwidth and channel frequency separation. Numerical results are presented for the case of Gaussian filters in both transmitter and receiver or receiver only and either one or two adjacent interfering channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号