首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
以恒定速度运动的Griffith裂纹解析解为著名的Yoffe解。静止裂纹的条状屈服模型即Dugdale模型,将其推广到运动裂纹模型时发现,当裂纹运动速度跨越Rayliegh波速时,裂纹张开位移COD趋于(∞,且表现为间断。通过在裂尖引入一个约束应力区及两个速度效应函数,假设约束应力为线性分布,采用复变函数方法,求得动态应力强度因子SIF与裂纹张开位移COD的解析解。新的结果,在Rayleigh波速下裂纹张开位移连续且为有限值。给出裂纹张开位移的一些数值结果,获得了一些有意义的结论。  相似文献   

2.
冲击载荷下双预置裂纹三点弯曲梁动态断裂实验   总被引:1,自引:0,他引:1  
采用数字激光焦散线实验系统,对双预置裂纹三点弯曲梁进行了动态冲击实验,分析了双预置裂纹对试件裂纹尖端扩展速率和动态应力强度因子值的影响。实验结果表明:1双预置裂纹三点弯曲梁在动态冲击实验中,B裂纹作为开裂裂纹,其起裂时间和扩展速率峰值受到冲击载荷加载点与其预置位置之间水平距离值的影响,距离越小,起裂越快,扩展速率峰值越大;2试件开裂后,裂纹的裂纹扩展速度和动态应力强度因子值随时间的变化曲线均具有快速上升然后波动下降的规律;3B裂纹起裂所需能量随着A、B裂纹间距a值减小而增大。  相似文献   

3.
唐雪松  赵小鹏 《工程力学》2012,29(10):20-26
该文以跨尺度应变能密度因子作为裂纹扩展的控制参量, 建立了跨尺度疲劳裂纹扩展模型。疲劳破坏全过程可用该模型进行统一描述, 而不必划分成疲劳裂纹形成与扩展两个不同阶段, 采用不同的理论分别进行分析。以LY12 铝合金板为例, 采用上述模型, 精确拟合出不同循环特征下的S-N试验曲线。当考虑材料微结构的影响时, 疲劳试验数据的发散性也可拟合出来。研究表明:材料初始缺陷及微结构在疲劳过程中的演化特性, 对于构件的疲劳寿命有显著影响, 是疲劳试验数据发散的主要原因。  相似文献   

4.
基于摩擦力函数的分段表达式,利用谐波平衡方法给出双粘着运动响应的级数形式解析解。双粘着运动响应仅包含奇次谐波成分,其响应幅值与粘着时长受频率比、力幅比及粘性阻尼比影响。基于级数解给出参数平面内的粘滑边界线函数。粘性阻尼增大能缩小纯滑动参数区域范围,在频率较小时影响更明显。当粘性阻尼比小于0.165 2时,粘滑边界线出现凸凹交替特征。  相似文献   

5.
研究含中心裂纹无限大板受远场均匀热流作用,热流密度方向与裂纹有一夹角的情况。当垂直于裂纹面方向有定量热流穿过裂纹时,采用复变函数理论,得出了温度、应力与位移场解析解。利用位移单值条件,确定出温度应力强度因子的解析表达式。针对铝合金LY12材料进行了数值计算,研究了裂纹导热情况与热流方向对温度场及温度应力强度因子的影响。研究表明:该文给定的温度边界条件下,只产生Ⅱ型温度应力强度因子,不产生Ⅰ型温度应力强度因子。热荷载可等效为一个远场均匀作用的剪应力。Ⅱ型温度应力场取决于热流密度沿垂直裂纹面方向的分量,平行于裂纹方向的热流分量对温度应力场没有影响。  相似文献   

6.
研究一种新的温度边值问题。含中心裂纹无限大板受远场均匀热流作用,热流密度方向与裂纹有一夹角。当裂纹面上维持一恒定温差时,采用复变函数理论,得出了温度场、温度应力场与位移场的解析解。利用位移单值条件,确定出温度应力强度因子的解析表达式。针对铝合金LY12 材料进行了相应数值计算,分析了热流密度大小与方向对温度分布与温度应力强度因子的影响。研究表明:该文给定的温度边界条件下,只产生Ⅰ 型温度应力强度因子,不产生Ⅱ 型温度应力强度因子。温度应力场取决于热流密度沿裂纹方向的分量,垂直于裂纹方向的分量对温度应力场没有影响。  相似文献   

7.
A method to extract dynamic T stress term of moving interfacial crack is proposed. Anisotropic bimaterial which has subsonic crack propagation is considered, and interaction energy method is applied. Stress fields by the constant T stress and stress fields by the point force moving with the crack are obtained by using the series expansion method and Stroh formalism. J based interaction energy (JI) between the constant T stress and the point force is calculated by Yeh formulation and the relation between interaction energy and T stress is obtained. Energy release rate and T stress of a moving interfacial crack are calculated numerically. Elastodynamic finite element code is developed to investigate fracture parameters for the propagating crack. Four nodes linear elastodynamic element is used and Newmark formulae are applied to integrate displacement and velocity. Node release method is adapted to simulate crack propagation along the interface. The energy release rate is calculated in the area moving with crack. T stress term is calculated from the interaction energy with a stress field formed by the moving point force. Five examples are solved to show the validity and time history of energy release rate and T stress. The energy release rate calculated from numerical analysis agrees well with an analytic solution and experimental results. The T stress of homogeneous specimen under the steady state condition shows a slightly different value compared with the stationary result. It is observed that the T stress of polymethyl methacrylate–steel specimen shows continuous change and the T stress of aluminum-polymethyl methacrylate specimen shows discontinuous jump when the initial crack initiates. From the result of the variation of T stress, the effect of T stress on the stability of crack propagation is observed.  相似文献   

8.
A cumulative model of fatigue crack growth   总被引:1,自引:0,他引:1  
A model of fatigue crack growth based on an analysis of elastic/plastic stress and strain at the crack tip is presented. It is shown that the fatigue crack growth rate can be calculated by means of the local stress/strain at the crack tip. The local stress and strain calculations are based on the general solutions given by Hutchinson, Rice and Rosengren. It is assumed that a small highly strained area existing at the crack tip is responsible for the fatigue crack growth. It is also assumed that the fatigue crack growth rate depends mainly on the width, x1, of the highly strained zone and on the strain range, Δ?1, within the zone. A relationship between stress intensity factor K and the local strain and stress has been developed. It is possible to calculate the local strain for a variety of crack problems. Then, the number of cycles N1 required for material failure inside the highly strained zone is calculated. The fatigue crack growth rate is calculated as the ratio x1N1.The calculated fatigue crack growth rates were compared to the experimental ones. Two alloys steels and two aluminium alloys were analyzed. Good agreement between experimental and theoretical results is obtained.  相似文献   

9.
In this research, both residual and applied stresses are converted to stress intensity factors independently and combined using the superposition principle. The fatigue crack propagation rates are predicted. Experiments using two different loading modes, constant applied stress intensity factor (SIF) range, and constant applied load modes are done for samples with and without initial tensile residual stresses. The samples with initial tensile residual stresses exhibit accelerations of the crack propagation rates. The results show that the weight function method combined with the three-component model provides a good prediction of fatigue crack propagation rates in tensile residual stress fields.  相似文献   

10.
The interface moving crack between the functionally graded coating and infinite substrate structure with free boundary is investigated in this paper. By application of the interface bonding conditions of the two media, all the quantities have been represented by means of a single unknown function. With the help of the exponent model of the shear modulus and density, the dual integral equation of moving crack problem is obtained by Fourier transform. The displacement is expanded into series form using Jacob Polynomial, and then the semi‐analytic solution of dynamic stress intensity factor is derived by Schmidt method. Dynamic stress intensity factor is influenced by those parameters such as crack velocity, graded parameter and coating height.  相似文献   

11.
The dynamic fracture problems of the piezoelectric materials with antiplane moving crack are analysed by using function of complex variable in the paper. The results show that the coupled elastic and electric fields inside piezoelectric media depend on the speed of the crack propagation, and have singularity at the crack tip. The stress intensity factor is independent of the speed of the crack propagation, which is identical to the conclusion of purely elasticity. Moreover, independent of the electric loading, the dynamic energy release rate can be expressed by the stress intensity factor and enlarge with the increase of crack speed. High speed of the crack moving could impede the crack growth. At the same time, the crack can be propagated into either curve or bifurcation if the crack speed is higher than the critical speed.  相似文献   

12.
This paper presents an extension of the dual boundary element method to analysis of crack growth in plates loaded in combine bending and tension. Five stress intensity factors, two for membrane behaviour and three for shear deformable plate bending are computed using the J-Integral technique. Crack growth processes are simulated with an incremental crack extension analysis based on the maximum principal stress criterion. The method is considered effective since no remeshing is required and the crack extension is modelled by adding new boundary elements to the previous crack boundaries. Several incremental crack growth analysis for different configurations and loadings are presented.  相似文献   

13.
为分析单裂纹或多裂纹在裂纹面承受疲劳拉伸载荷作用下尖端应力强度因子变化规律和裂纹形貌变化以及疲劳寿命情况,以含不同初始长深比的半椭圆单裂纹或双裂纹的薄片试样为研究对象,对试样在应力比R=0.1的疲劳拉伸载荷下单裂纹或双裂纹情况进行了仿真分析。建立含裂纹试样的有限元模型,仿真分析了裂纹在扩展过程中尖端应力强度因子的分布情况,并将单裂纹扩展结果与双裂纹相互作用影响下的结果进行了对比研究;进行含裂纹试样的疲劳实验,分析了含单裂纹或双裂纹的试样的断裂面的形成原因,并验证仿真结果正确性。结果表明,裂纹面之间的相互作用会逐渐影响裂纹的扩展方向、扩展速率以及在扩展过程中尖端应力强度因子的变化趋势;而且初始形貌为半椭圆形的双裂纹在相互作用影响下会逐渐过渡到半圆形。  相似文献   

14.
Many non‐linear fracture models have been proposed by design codes and investigators to determine fracture parameters of cement‐based materials. To characterise failure of concrete structures, the effective crack model (ECM) needs two fracture parameters: the effective crack length ae and the critical stress intensity factor . Nevertheless, ECM requires a closed‐loop testing system and the calculation of ae needs considerable computational effort. For this reason, ECM is simulated with an artificial neural network (ANN) in this study. The main benefit of using an ANN approach is that the network is built directly on experimental data by using the self‐organizing capabilities of the ANN. The presented fracture model was developed by utilising 464 noisy test data taken from the literature, which were obtained via different test methods in different laboratories. The results of an ANN‐based ECM look viable and very promising.  相似文献   

15.
In this work, the influence of crack propagation velocity in the stress intensity factor has been studied. The analysis is performed with a lattice method and a linear elastic constitutive model. Numerous researchers determined the relationship between the dynamic stress intensity factor and crack propagation velocity with experimental and analytical results. They showed that toughness increases asymptotically when the crack tip velocity is near to a critical. However, these methods are very complex and computationally expensive; furthermore, the model requires the use of several parameters that are not easily obtained. Moreover, its practical implementation is not always feasible. Hence, it is usually omitted. This paper aims to capture the physics of this complex problem with a simple fracture criterion. The selected criterion is based on the maximum principal strain implemented in a lattice model. The method used to calculate the stress intensity factor is validated with other numerical methods. The selected example is a finite 2D notched under mode I fracture and different loads rates. Results show that the proposed model captures the asymptotic behaviour of the SIF in function of crack speed, as reported in the aforementioned models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号