首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify and characterize individual Ca2+ pumps, we have expressed an Arabidopsis ECA1 gene encoding an endoplasmic reticulum-type Ca2+-ATPase homolog in the yeast (Saccharomyces cerevisiae) mutant K616. The mutant (pmc1pmr1cnb1) lacks a Golgi and a vacuolar membrane Ca2+ pump and grows very poorly on Ca2+-depleted medium. Membranes isolated from the mutant showed high H+/Ca2+-antiport but no Ca2+-pump activity. Expression of ECA1 in endomembranes increased mutant growth by 10- to 20-fold in Ca2+-depleted medium. 45Ca2+ pumping into vesicles from ECA1 transformants was detected after the H+/Ca2+-antiport activity was eliminated with bafilomycin A1 and gramicidin D. The pump had a high affinity for Ca2+ (Km = 30 nM) and displayed two affinities for ATP (Km of 20 and 235 microM). Cyclopiazonic acid, a specific blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, inhibited Ca2+ transport (50% inhibition dose = 3 nmol/mg protein), but thapsigargin (3 microM) did not. Transport was insensitive to calmodulin. These results suggest that this endoplasmic reticulum-type Ca2+-ATPase could support cell growth in plants as in yeast by maintaining submicromolar levels of cytosolic Ca2+ and replenishing Ca2+ in endomembrane compartments. This study demonstrates that the yeast K616 mutant provides a powerful expression system to study the structure/function relationships of Ca2+ pumps from eukaryotes.  相似文献   

2.
Malignant hyperthermia (MH) and central core disease (CCD) mutations were introduced into full-length rabbit Ca2+ release channel (RYR1) cDNA, which was then expressed transiently in HEK-293 cells. Resting Ca2+ concentrations were higher in HEK-293 cells expressing homotetrameric CCD mutant RyR1 than in cells expressing homotetrameric MH mutant RyR1. Cells expressing homotetrameric CCD or MH mutant RyR1 exhibited lower maximal peak amplitudes of caffeine-induced Ca2+ release than cells expressing wild type RyR1, suggesting that MH and CCD mutants might be "leaky." In cells expressing homotetrameric wild type or mutant RyR1, the amplitude of 10 mM caffeine-induced Ca2+ release was correlated significantly with the amplitude of carbachol- or thapsigargin-induced Ca2+ release, indicating that maximal drug-induced Ca2+ release depends on the size of the endoplasmic reticulum Ca2+ store. The content of endogenous sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b), measured by enzyme-linked immunosorbent assay, 45Ca2+ uptake, and confocal microscopy, was increased in HEK-293 cells expressing wild type or mutant RyR1, supporting the view that endoplasmic reticulum Ca2+ storage capacity is increased as a compensatory response to an enhanced Ca2+ leak. When heterotetrameric (1:1) combinations of MH/CCD mutant and wild type RyR1 were expressed together with SERCA1 to enhance Ca2+ reuptake, the amplitude of Ca2+ release in response to low concentrations of caffeine and halothane was higher than that observed in cells expressing wild type RyR1 and SERCA1. In Ca2+-free medium, MH/CCD mutants were more sensitive to caffeine than wild type RyR1, indicating that caffeine hypersensitivity observed with a variety of MH/CCD mutant RyR1 proteins is not dependent on extracellular Ca2+ concentration.  相似文献   

3.
Previous studies have indicated that the vacuole represents the major inositol 1,4,5-trisphosphate (InsP3)-mobilizable Ca2+ pool in higher plants. This findings is in contrast to animal cells, in which the endoplasmic reticulum and plasma membrane constitute the dominant InsP3-sensitive membranes. We used membrane vesicles prepared from cauliflower (Brassica oleracae L.) inflorescences that were separated on continuous sucrose gradients to demonstrate that cauliflower possesses at least two distinct membrane populations that are sensitive to InsP3. One of these membrane populations in nonvacuolar in origin and relies upon a Ca(2+)-ATPase to accumulate Ca2+. In addition, we have shown that two polyclonal antibodies, raised against peptides corresponding to the animal type 1 InsP3 receptor, recognize immunologically related proteins in cauliflower, and that the distribution of immunoreactive proteins on a linear sucrose gradient reinforces the notion that cauliflower contains more than one membrane subtype that is sensitive to InsP3. To our knowledge, this is the first report describing an InsP3-sensitive Ca2+ store other than the vacuole in higher plant cells.  相似文献   

4.
ADP ribosylation factor (ARF) is thought to play a critical role in recruiting coatomer (COPI) to Golgi membranes to drive transport vesicle budding. Yeast strains harboring mutant COPI proteins exhibit defects in retrograde Golgi to endoplasmic reticulum protein transport and striking cargo-selective defects in anterograde endoplasmic reticulum to Golgi protein transport. To determine whether arf mutants exhibit similar phenotypes, the anterograde transport kinetics of multiple cargo proteins were examined in arf mutant cells, and, surprisingly, both COPI-dependent and COPI-independent cargo proteins exhibited comparable defects. Retrograde dilysine-mediated transport also appeared to be inefficient in the arf mutants, and coatomer mutants with no detectable anterograde transport defect exhibited a synthetic growth defect when combined with arf1Delta, supporting a role for ARF in retrograde transport. Remarkably, we found that early and medial Golgi glycosyltransferases localized to abnormally large ring-shaped structures. The endocytic marker FM4-64 also stained similar, but generally larger ring-shaped structures en route from the plasma membrane to the vacuole in arf mutants. Brefeldin A similarly perturbed endosome morphology and also inhibited transport of FM4-64 from endosomal structures to the vacuole. Electron microscopy of arf mutant cells revealed the presence of what appear to be hollow spheres of interconnected membrane tubules which likely correspond to the fluorescent ring structures. Together, these observations indicate that organelle morphology is significantly more affected than transport in the arf mutants, suggesting a fundamental role for ARF in regulating membrane dynamics. Possible mechanisms for producing this dramatic morphological change in intracellular organelles and its relation to the function of ARF in coat assembly are discussed.  相似文献   

5.
A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies specific for sarcoplasmic reticulum Ca2+-ATPase type 2b. Partial purification and immunoblotting confirmed that the 105-kDa protein band phosphorylated by PKA is NCA. The stoichiometry of phosphorylation was 0.76 mol of phosphate incorporated/mol of partially purified enzyme. Measurement of ATP-dependent 45Ca2+ uptake into purified nuclei showed that PKA phosphorylation enhanced the Ca2+-pumping activity of NCA. We show that PKA phosphorylation of Ca2+-ATPase enhances the transport of 10-kDa fluorescent-labeled dextrans across the nuclear envelope. The findings reported in this paper are consistent with the notion that the crosstalk between the cAMP/PKA- and Ca2+-dependent signaling pathways identified at the cytoplasmic level extends to the nucleus. Furthermore, these data support a function for crosstalk in the regulation of calcium-dependent transport across the nuclear envelope.  相似文献   

6.
In Fura-2-loaded, freshly isolated rabbit aortic endothelial cells the Ca2+ entry pathway was investigated using the Mn2(+)-quenching technique. Acetylcholine (ACh) interaction with muscarinic receptors activated Mn2+ influx through the plasma membrane. Sarcoplasmic-endoplasmic reticulum Ca2+ ATPase blockers such as cyclopiazonic acid (CPA), thapsigargin and BHQ, which block the endoplasmic reticulum Ca2+ pump and do not interact with receptors, also activated Mn2+ influx. Mn2+ influx activated by either ACh or CPA was blocked by the following agents: SKF96365, a receptor-operated Ca2+ channel (ROC) blocker; NCDC, a PLC and ROC blocker, and genistein, a tyrosine kinase inhibitor. D600, the L-type Ca2+ channel blocker, had no significant effect on Mn2+ influx. Caffeine blocked the ACh-induced Ca2+ release but had no effect on the ACh-induced Mn2+ influx. Similarly dantrolene, which blocked intracellular Ca2+ release induced by ACh, did not affect the ACh-activated Mn2+ influx. These data suggest that ACh can activate Ca2+ influx without depletion of the ACh-sensitive intracellular Ca2+ store. It is concluded (1) that in freshly isolated endothelial cells depletion of the intracellular Ca2+ store is not necessary for ACh-activated Ca2+ influx, and (2) that receptor activation and intracellular Ca2+ store depletion may activate the same Ca2+ entry pathway through parallel mechanisms.  相似文献   

7.
In the past few years, intracellular organelles, such as the endoplasmic reticulum, the nucleus and the mitochondria, have emerged as key determinants in the generation and transduction of Ca2+ signals of high spatio-temporal complexity. Little is known about the Golgi apparatus, despite the fact that Ca2+ within its lumen controls essential processes, such as protein processing and sorting. We report the direct monitoring of the [Ca2+] in the Golgi lumen ([Ca2+]Golgi) of living HeLa cells, using a specifically targeted Ca2+-sensitive photoprotein. With this probe, we show that, in resting cells, [Ca2+]Golgi is approximately 0.3 mM and that Ca2+ accumulation by the Golgi has properties distinct from those of the endoplasmic reticulum (as inferred by the sensitivity to specific inhibitors). Upon stimulation with histamine, an agonist coupled to the generation of inositol 1,4,5-trisphosphate (IP3), a large, rapid decrease in [Ca2+]Golgi is observed. The Golgi apparatus can thus be regarded as a bona fide IP3-sensitive intracellular Ca2+ store, a notion with major implications for the control of organelle function, as well as for the generation of local cytosolic Ca2+ signals.  相似文献   

8.
Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-dependent protein kinase has been proposed to provide additional regulation. To investigate these effects in detail, we have purified Ca2+-ATPase from cardiac sarcoplasmic reticulum using affinity chromatography and reconstituted it with purified, recombinant phospholamban. The resulting proteoliposomes had high rates of calcium transport, which was tightly coupled to ATP hydrolysis (approximately 1.7 calcium ions transported per ATP molecule hydrolyzed). Co-reconstitution with phospholamban suppressed both calcium uptake and ATPase activities by approximately 50%, and this suppression was fully relieved by a phospholamban monoclonal antibody or by phosphorylation either with cAMP-dependent protein kinase or with calcium/calmodulin-dependent protein kinase. These effects were consistent with a change in the apparent calcium affinity of Ca2+-ATPase and not with a change in Vmax. Neither the purified, reconstituted cardiac Ca2+-ATPase nor the Ca2+-ATPase in longitudinal cardiac sarcoplasmic reticulum vesicles was a substrate for calcium/calmodulin-dependent protein kinase, and accordingly, we found no effect of calcium/calmodulin-dependent protein kinase phosphorylation on Vmax for calcium transport.  相似文献   

9.
Nitric oxide (NO) is a potent inhibitor of thrombin-induced increase in cytoplasmic free Ca2+ concentration and aggregation in platelets, but the precise mechanism of this inhibition is unclear. To measure Ca2+/Mn2+ influx in intact platelets and to monitor Ca2+ uptake into the stores in permeabilized platelets, fura-2 was used. In intact platelets, maximal capacitative Ca2+ and Mn2+ influx developed rapidly (within 30 s) after fast release of Ca2+ from the stores with thrombin (0.5 U/mL) or slowly (within 5 to 10 minutes) following passive Ca2+ leak caused by inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) with 30 micromol/L 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ). NO (1 micromol/L) inhibited capacitative Ca2+ and Mn2+ influx independently of the time after thrombin application. In contrast, the effect of NO on BHQ-induced Ca2+ and Mn2+ influx was observed only during the first few minutes after BHQ application and completely disappeared when capacitative cation influx reached its maximum. In Ca2+-free medium, NO reduced the peak Ca2+ rise caused by thrombin and significantly promoted Ca2+ back-sequestration into the stores. Both effects disappeared in the presence of BHQ. Inhibition of guanylate cyclase with H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (10 micromol/L) attenuated but did not prevent the effects of NO on cytoplasmic free Ca2+ concentration. Inhibition of Ca2+ uptake by mitochondria did not change the effects of NO. In permeabilized platelets, NO accelerated back-sequestration of Ca2+ into the stores after inositol-1,4,5-trisphosphate-induced Ca2+ release or after addition of Ca2+ (1 micromol/L) in the absence of inositol-1,4,5-trisphosphate. The effect of NO depended on the initial rate of Ca2+ uptake and on the concentration of ATP and was abolished by BHQ, indicating the direct involvement of SERCA. These data strongly support the hypothesis that NO inhibits store-operated cation influx in human platelets indirectly via acceleration of SERCA-dependent refilling of Ca2+ stores.  相似文献   

10.
A limited amount of information is available about the lumenal Ca2+ kinetics of the sarcoplasmic reticulum (SR). Incubation of mag-fura-2AM permitted to incorporate a sufficient amount of the probe into the SR vesicles, as determined by Mn2+ quenching. Rapid changes in the lumenal [Ca2+] ([Ca2+]lum) during Ca2+ uptake and release could be monitored by following the signal derived from the lumenal probe while clamping the extra-vesicular Ca2+ ([Ca2+]ex) at various desired levels with a BAPTA/Ca buffer. Changes in the [Ca2+]lum during uptake and release show the characteristics intrinsic to the SR Ca2+ pump (the [Ca2+]ex-dependence of the activation and inhibition by thapsigargin) and the Ca2+ release channel (blocking by ruthenium red), respectively. A new feature revealed by the [Ca2+]lum measurement is that during the uptake reaction the free [Ca2+]lum showed a significant oscillation. Several pieces of evidence suggest that this is due to some interactions between the Ca2+ pump and lumenal proteins.  相似文献   

11.
The mechanism by which agonist-evoked cytosolic Ca2+ signals are terminated has been investigated. We measured the Ca2+ concentration inside the endoplasmic reticulum store of pancreatic acinar cells and monitored the cytoplasmic Ca2+ concentration by whole-cell patch-clamp recording of the Ca2+-sensitive currents. When the cytosolic Ca2+ concentration was clamped at the resting level by a high concentration of a selective Ca2+ buffer, acetylcholine evoked the usual depletion of intracellular Ca2+ stores, but without increasing the Ca2+-sensitive currents. Removal of acetylcholine allowed thapsigargin-sensitive Ca2+ reuptake into the stores, and this process stopped when the stores had been loaded to the pre-stimulation level. The apparent rate of Ca2+ reuptake decreased steeply with an increase in the Ca2+ concentration in the store lumen and it is this negative feedback on the Ca2+ pump that controls the Ca2+ store content. In the absence of a cytoplasmic Ca2+ clamp, acetylcholine removal resulted in a rapid return of the elevated cytoplasmic Ca2+ concentration to the pre-stimulation resting level, which was attained long before the endoplasmic reticulum Ca2+ store had been completely refilled. We conclude that control of Ca2+ reuptake by the Ca2+ concentration inside the intracellular store allows precise Ca2+ signal termination without interfering with store refilling.  相似文献   

12.
Although fluctuations in cytosolic Ca2+ concentration have a crucial role in relaying intracellular messages in the cell, the dynamics of Ca2+ storage in and release from intracellular sequestering compartments remains poorly understood. The rapid release of stored Ca2+ requires large concentration gradients that had been thought to result from low-affinity buffering of Ca2+ by the polyanionic matrices within Ca2+-sequestering organelles. However, our results here show that resting luminal free Ca2+ concentration inside the endoplasmic reticulum and in the mucin granules remains at low levels (20-35 microM). But after stimulation, the free luminal [Ca2+] increases, undergoing large oscillations, leading to corresponding oscillations of Ca2+ release to the cytosol. These remarkable dynamics of luminal [Ca2+] result from a fast and highly cooperative Ca2+/K+ ion-exchange process rather than from Ca2+ transport into the lumen. This common paradigm for Ca2+ storage and release, found in two different Ca2+-sequestering organelles, requires the functional interaction of three molecular components: a polyanionic matrix that functions as a Ca2+/K+ ion exchanger, and two Ca2+-sensitive channels, one to import K+ into the Ca2+-sequestering compartments, the other to release Ca2+ to the cytosol.  相似文献   

13.
Protein synthesis in H9c2 ventricular myocytes was subject to rapid inhibition by agents that release Ca2+ from the sarcoplasmic/endoplasmic reticulum, including thapsigargin, ionomycin, caffeine, and arginine vasopressin. Inhibitions were attributable to the suppression of translational initiation and were coupled to the mobilization of cell-associated Ca2+ and the phosphorylation of eIF2alpha. Ionomycin and thapsigargin produced relatively stringent degrees of Ca2+ mobilization that produced an endoplasmic reticulum (ER) stress response. Translational recovery was associated with the induction of ER chaperones and resistance to translational inhibition by Ca2+-mobilizing agents. Vasopressin at physiologic concentrations mobilized 60% of cell-associated Ca2+ and decreased protein synthesis by 50% within 20-30 min. The inhibition of protein synthesis was exerted through an interaction at the V1 vascular receptor, was imposed at physiologic extracellular Ca2+ concentrations, and became refractory to hormonal washout within 10 min of treatment. Inhibition was found to attenuate after 30 min, with full recovery occurring in 2 h. Translational recovery did not involve an ER stress response but rather was derived from the partial repletion of intracellular Ca2+ stores. Longer exposures to vasopressin were invariably accompanied by increased rates of protein synthesis. Translational inhibition by vasopressin, but not by Ca2+-mobilizing drugs, was both preventable and reversible by treatment with phorbol ester, which reduced the extent of Ca2+ mobilization occurring in response to the hormone. Larger and more prolonged translational inhibitions occurred after down-regulation of protein kinase C. This report provides the first compelling evidence that hormonally induced mobilization of sarcoplasmic/endoplasmic reticulum Ca2+ stores is regulatory upon mRNA translation.  相似文献   

14.
Sorting of membrane proteins between compartments of the secretory pathway is mediated in part by their transmembrane domains (TMDs). In animal cells, TMD length is a major factor in Golgi retention. In yeast, the role of TMD signals is less clear; it has been proposed that membrane proteins travel by default to the vacuole, and are prevented from doing so by cytoplasmic signals. We have investigated the targeting of the yeast endoplasmic reticulum (ER) t-SNARE Ufe1p. We show that the amino acid sequence of the Ufe1p TMD is important for both function and ER targeting, and that the requirements for each are distinct. Targeting is independent of Rer1p, the only candidate sorting receptor for TMD sequences currently known. Lengthening the Ufe1p TMD allows transport along the secretory pathway to the vacuole or plasma membrane. The choice between these destinations is determined by the length and composition of the TMD, but not by its precise sequence. A longer TMD is required to reach the plasma membrane in yeast than in animal cells, and shorter TMDs direct proteins to the vacuole. TMD-based sorting is therefore a general feature of the yeast secretory pathway, but occurs by different mechanisms at different points.  相似文献   

15.
The effects of cyclopiazonic acid and thapsigargin, selective inhibitors of the endoplasmic reticulum Ca2+-ATPase pump, on the platelet aggregation were investigated using washed rat platelets prepared by chromatography on Sepharose 2B columns. In Ca2+-free medium, cyclopiazonic acid and thapsigargin did not induce aggregation, but in the presence of 1 mM Ca2+, platelet aggregation was induced in a concentration-dependent manner. Cyclopiazonic acid- and thapsigargin-induced platelet aggregation was blocked by 1 mM Ni2+ but not by 100 microM indomethacin or 1 microM nifedipine. In aequorin-loaded platelets, cyclopiazonic acid and thapsigargin caused sustained elevation of the cytosolic Ca2+ concentration, an effect which was blocked by Ni2+, a non-selective Ca2+ channel blocker and SK&F 96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenyl]-1H-imidazole hydrochloride), a putative receptor-operated Ca2+ channel antagonist. The above results indicated that both cyclopiazonic acid and thapsigargin induced platelet aggregation and elevation of cytosolic Ca2+ concentration, that extracellular Ca2+ was essential for cyclopiazonic acid- and thapsigargin-induced platelet aggregation, and that platelet aggregation may be associated with Ca2+ influx through Ca2+ store-activated Ca2+ channels.  相似文献   

16.
1. Primary-cultured cerebellar Purkinje cells (PCs) from mouse embryos were whole cell voltage clamped, and L-glutamate (Glu) was applied iontophoretically to the dendrite. Long-term depression (LTD) of Glu-evoked currents was induced through the conjunction of repeated depolarizations and Glu applications. 2. Thapsigargin, a specific inhibitor of Ca(2+)-ATPase on the endoplasmic reticulum, and ryanodine and ruthenium red, inhibitors of the ryanodine receptor, blocked the induction of LTD. 3. Thapsigargin and ryanodine alone did not affect influx of Ca2+ through voltage-gated Ca2+ channels and inward currents evoked by Glu applications. 4. Our results suggest that Ca2+ release from internal stores, particularly from ryanodine-sensitive stores, is necessary for the induction of LTD in cultured PCs.  相似文献   

17.
PMR1, a P-type ATPase cloned from the yeast Saccharomyces cerevisiae, was previously localized to the Golgi, and shown to be required for normal secretory processes (Antebi, A., and Fink, G.R. (1992) Mol. Biol. Cell 3, 633-654). We provide biochemical evidence that PMR1 is a Ca2+-transporting ATPase in the Golgi, a hitherto unusual location for a Ca2+ pump. As a starting point for structure-function analysis using a mutagenic approach, we used the strong and inducible heat shock promoter to direct high level expression of PMR1 from a multicopy plasmid. Yeast lysates were separated on sucrose density gradients, and fractions assayed for organellar markers. PMR1 is found in fractions containing the Golgi marker guanosine diphosphatase, and is associated with an ATP-dependent, protonophore-insensitive 45Ca2+ uptake activity. This activity is virtually abolished in the absence of the expression plasmid. Furthermore, replacement of the active site aspartate within the phosphorylation domain had the expected effect of abolishing Ca2+ transport activity entirely. Interestingly, the mutant enzymes (Asp-371 --> Glu and Asp-371 --> Asn) demonstrated proper targeting to the Golgi, unlike analogous mutations in the related yeast H+-ATPase. Detailed characterization of calcium transport by PMR1 showed that sensitivity to inhibitors (vanadate, thapsigargin, and cyclopiazonic acid) and affinity for substrates (MgATP and Ca2+) were different from the previously characterized sarco/endoplasmic reticulum and plasma membrane Ca2+-ATPases. PMR1 therefore represents a new and distinct P-type Ca2+-ATPase. Because close homologs of PMR1 have been cloned from rat and other organisms, we suggest that Ca2+-ATPases in the Golgi will form a discrete subgroup that are important for functioning of the secretory pathway.  相似文献   

18.
Oxidants are important human toxicants. Increased intracellular free Ca2+ may be critical for oxidant toxicity, but this mechanism remains controversial. Furthermore, oxidants damage the endoplasmic reticulum (ER) and release ER Ca2+, but the role of the ER in oxidant toxicity and Ca2+ regulation during toxicity is also unclear. tert-Butylhydroperoxide (TBHP), a prototypical organic oxidant, causes oxidative stress and an increase in intracellular free Ca2+. Therefore, we addressed the mechanism of oxidant-induced cell death and investigated the role of ER stress proteins in Ca2+ regulation and cytoprotection after treating renal epithelial cells with TBHP. Prior ER stress induces expression of the ER stress proteins Grp78, Grp94, and calreticulin and rendered cells resistant to cell death caused by a subsequent TBHP challenge. Expressing antisense RNA targeted to grp78 prevents grp78 induction sensitized cells to TBHP and disrupted their ability to develop cellular tolerance. In addition, overexpressing calreticulin, another ER chaperone and Ca2+-binding protein, also protected cells against TBHP. Interestingly, neither prior ER stress nor calreticulin expression prevented lipid peroxidation, but both blocked the rise in intracellular free Ca2+ after TBHP treatment. Loading cells with EGTA, even after peroxidation had already occurred, also prevented TBHP-induced cell death, indicating that buffering intracellular Ca2+ prevents cell killing. Thus, Ca2+ plays an important role in TBHP-induced cell death in these cells, and the ER is an important regulator of cellular Ca2+ homeostasis during oxidative stress. Given the importance of oxidants in human disease, it would appear that the role of ER stress proteins in protection from oxidant damage warrants further consideration.  相似文献   

19.
Transport of yeast alkaline phosphatase (ALP) to the vacuole depends on the clathrin adaptor-like complex AP-3, but does not depend on proteins necessary for transport through pre-vacuolar endosomes. We have identified ALP sequences that direct sorting into the AP-3-dependent pathway using chimeric proteins containing residues from the ALP cytoplasmic domain fused to sequences from a Golgi-localized membrane protein, guanosine diphosphatase (GDPase). The full-length ALP cytoplasmic domain, or ALP amino acids 1-16 separated from the transmembrane domain by a spacer, directed GDPase chimeric proteins from the Golgi complex to the vacuole via the AP-3 pathway. Mutation of residues Leu13 and Val14 within the ALP cytoplasmic domain prevented AP-3-dependent vacuolar transport of both chimeric proteins and full-length ALP. This Leucine-Valine (LV)-based sorting signal targeted chimeric proteins and native ALP to the vacuole in cells lacking clathrin function. These results identify an LV-based sorting signal in the ALP cytoplasmic domain that directs transport into a clathrin-independent, AP-3-dependent pathway to the vacuole. The similarity of the ALP sorting signal to mammalian dileucine sorting motifs, and the evolutionary conservation of AP-3 subunits, suggests that dileucine-like signals constitute a core element for AP-3-dependent transport to lysosomal compartments in all eukaryotic cells.  相似文献   

20.
Calreticulin is a component of cytotoxic T-lymphocyte and NK lymphocyte granules. We report here that granule-associated calreticulin terminates with the KDEL endoplasmic reticulum retrieval amino acid sequence and somehow escapes the KDEL retrieval system. In perforin knock-out mice calreticulin is still targeted into the granules. Thus, calreticulin will traffic without perforin to cytotoxic granules. In the granules, calreticulin and perforin are associated as documented by (i) copurification of calreticulin with perforin but not with granzymes and (ii) immunoprecipitation of a calreticulin-perforin complex using specific antibodies. By using calreticulin affinity chromatography and protein ligand blotting we show that perforin binds to calreticulin in the absence of Ca2+ and the two proteins dissociate upon exposure to 0.1 mM or higher Ca2+ concentration. Perforin interacts strongly with the P-domain of calreticulin (the domain which has high Ca2+-binding affinity and chaperone function) as revealed by direct protein-protein interaction, ligand blotting, and the yeast two-hybrid techniques. Our results suggest that calreticulin may act as Ca2+-regulated chaperone for perforin. This action will serve to protect the CTL during biogenesis of granules and may also serve to regulate perforin lytic action after release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号