首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of environmental ethanol on different fitness components and the larval activities of some enzymes were studied in three strains of Drosophila melanogaster. All three strains carried the AdhS-alphaGpdhF allele combination on their second chromosomes while they had unique allele combinations at the Odh and Aldox loci on their third chromosomes (strain 1: OdhS-AldoxF; strain 2: OdhF-AldoxS; strain 3: OdhS-AldoxS). Normal lines and exposure lines, kept on 5% ethanol supplemented medium for at least 20 generations, were established from each strain and the responses of the two lines to different ethanol concentrations were compared. Two survival components were estimated in the juvenile life history stages. In addition, the weights of the emerging adult males were measured at various concentrations of ethanol. The changes in the activities of two enzymes (ADH and alpha GPDH) were also surveyed in the larvae after the different ethanol treatments. Strain-specific differences were observed in the responses of all investigated traits to ethanol. OdhS-AldoxF larvae seemed to be more tolerant to ethanol than the larvae of the other two strains while the utilisation of ethanol as energy source appeared to be the least effective in this strain. Larvae of the exposure lines had significantly higher tolerance to ethanol, and the adult males were heavier, than the ones from the normal lines. The enzymatic responses of the two lines to the ethanol treatments were also different. ADH activity, fresh male weight, and pupa-to-adult survival seemed only to be associated under short-term exposure to ethanol. Ethanol tolerance appeared to be independent of the utilisation of ethanol in the larva-to-pupa stage.  相似文献   

2.
The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compared. GPDH is thus a limiting enzyme for glycerol production. Wine yeast strains with modulated GPD1 (encoding one of the two GPDH isoenzymes) expression were constructed and characterized during fermentation on glucose-rich medium. Engineered strains fermented glucose with a strongly modified [glycerol] : [ethanol] ratio. gpd1delta mutants exhibited a 50% decrease in glycerol production and increased ethanol yield. Overexpression of GPD1 on synthetic must (200 g/l glucose) resulted in a substantial increase in glycerol production ( x 4) at the expense of ethanol. Acetaldehyde accumulated through the competitive regeneration of NADH via GPDH. Accumulation of by-products such as pyruvate, acetate, acetoin, 2,3 butane-diol and succinate was observed, with a marked increase in acetoin production.  相似文献   

3.
Some methylotrophic yeasts produce methyl formate from methanol and formaldehyde via hemiacetal formation. We investigated Saccharomyces cerevisiae to find whether this yeast has a carboxylate ester producing pathway that proceeds via hemiacetal dehydrogenation. We confirmed that the purified alcohol dehydrogenase (Adh) protein from S. cerevisiae can catalyze the production of esters. High specific activities were observed toward the hemiacetals corresponding to the primary alcohols when ether groups were substituted for methylene groups, resulting in the formation of formate esters. Both ADH and methyl formate synthesizing activities were sharply reduced in the delta adh1 delta adh2 mutant. The ADH1 and ADH2 genes encode the major Adh proteins in S. cerevisiae. Thus, it was concluded that the S. cerevisiae Adh protein catalyzes activities for the production of certain carboxylate esters.  相似文献   

4.
The lowering of activity of succinate dehydrogenase (SDH), alpha-glycerophosphate dehydrogenase (alpha GPDH), glucose-6-phosphate dehydrogenase (G-6-PDH), the raising of activity of lactate dehydrogenase (LDH) was noted in neutrophil granulocytes in an acute experimental pancreatitis. The prophylaxis of SDH, alpha GPDH, G-6-PDH activity lowering and LDH activity raising was promoted by trental and thiotriazoline injection.  相似文献   

5.
A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH.  相似文献   

6.
Male mice of three strains, C57BL, DBA and C3H/He, were fed on commercial food with 10% (v/v) ethanol solution as drinking liquid ad libitum for eighty days, and the changes in the activities of enzymes in the metabolic pathway of ethanol in the liver were examined. C57BL and C3H/He mice showed a preference for drinking the 10% (v/v) ethanol solution, while DBA mice did not. The ethanol intake g/g of body weight of C3H/He mice showed the highest value among all three strains and that of C57BL mice tended to show higher value than that of DBA mice. The liver weights of C57BL and C3H/He mice increased significantly following chronic ethanol administration, but that of DBA did not. The cytosolic enzyme alcohol dehydrogenase (ADH) showed no changes in any of the strains following chronic ethanol administration. The microsomal ethanol-oxidizing system (MEOS) of C57BL mice exhibited approximately 2-fold higher activity compared to that of DBA and C3H/He mice but did not increase in any strain following chronic ethanol administration. However, the microsomal aniline hydroxylase activity in the liver increased significantly in C57BL and C3H/He mice following chronic administration of ethanol. The microsomal cytochrome P-450 content also tended to slightly increase in the same strains of mice. It seemed that cytochrome P-450IIE1 was induced in the liver microsomes of these strains. Total aldehyde dehydrogenase (ALDH) activities together with high-Km ALDH activity increased markedly in the microsomes of C57BL mice and tended to increase in C3H/He mice, while it did not change in DBA mice following chronic ethanol administration. In the mitochondria of C57BL, total ALDH activities increased slightly and high-Km ALDH activities tended to increase. These mitochondrial ALDH activities of C3H/He and DBA mice tended to increase following chronic ethanol administration. The cytosolic ALDH activity showed no changes in any strain of mice following chronic ethanol administration. It seemed that in the microsomes, the activities of enzymes related to oxidation of ethanol increased in C57BL and C3H/He mice, which tended to consume a large amount of ethanol, and did not in DBA mice which tended to consume a small amount of it. It seemed that the increases in activities of enzymes related to oxidation of acetaldehyde in the microsomes and in the mitochondria were responsible for the strain difference.  相似文献   

7.
Intracolonic bacteria have previously been shown to produce substantial amounts of acetaldehyde during ethanol oxidation, and it has been suggested that this acetaldehyde might be associated with alcohol-related colonic disorders, as well as other alcohol-induced organ injuries. The capacity of colonic mucosa to remove this bacterial acetaldehyde by aldehyde dehydrogenase (ALDH) is, however, poorly known. We therefore measured ALDH activities and determined ALDH isoenzyme profiles from different subcellular fractions of rat colonic mucosa. For comparison, hepatic, gastric, and small intestinal samples were studied similarly. Alcohol dehydrogenase (ADH) activities were also measured from all of these tissues. Rat colonic mucosa was found to possess detectable amounts of ALDH activity with both micromolar and millimolar acetaldehyde concentrations and in all subcellular fractions. The ALDH activities of colonic mucosa were, however, generally low when compared with the liver and stomach, and they also tended to be lower than in small intestine. Mitochondrial low K(m) ALDH2 and cytosolic ALDH with low K(m) for acetaldehyde were expressed in the colonic mucosa, whereas some cytosolic high K(m) isoenzymes found in the small intestine and stomach were not detectable in colonic samples. Cytosolic ADH activity corresponded well to ALDH activity in different tissues: in colonic mucosa, it was approximately 6 times lower than in the liver and about one-half of gastric ADH activity. ALDH activity of the colonic mucosa should, thus, be sufficient for the removal of acetaldehyde produced by colonic mucosal ADH during ethanol oxidation. It may, however, be insufficient for the removal of the acetaldehyde produced by intracolonic bacteria. This may lead to the accumulation of acetaldehyde in the colon and colonic mucosa after ingestion of ethanol that might, at least after chronic heavy alcohol consumption, contribute to the development of alcohol-related colonic morbidity, diarrhea, and cancer.  相似文献   

8.
We investigated the effect of the tumor necrosis factor-alpha (TNF alpha) on the differentiation of human adipocyte precursor cells in primary culture. Adipocyte precursors convert into fat cells within 12-16 days in a chemically defined, hormone-supplemented medium. Exposure of cultured preadipocytes to TNF alpha resulted in a dose- and time-dependent decrease in the number of developing fat cells and the activity of glycerol-3-phosphate dehydrogenase (GPDH), an established marker of adipocyte differentiation. A 24-h incubation with TNF alpha at a concentration of 5 nM suppressed GPDH activity by 55% compared to that in control cultures. Continuous exposure of the cells to TNF alpha completely blocked expression of the adipocyte phenotype and GPDH activity. The inhibitory action of TNF alpha was not associated with a change in cell number, as assessed by cell counting. The addition of 5 nM TNF alpha for 24 h to newly developed fat cells caused a rapid reduction of GPDH activity by approximately 50%. A 14-day exposure of differentiated cells to TNF alpha was followed by complete suppression of GPDH and a marked delipidation of the cells, including morphological changes, leading to the development of long spindle-shaped cytoplasmatic extensions. These results clearly demonstrate that TNF alpha inhibits the differentiation of human adipocyte precursor cells and, in addition, promotes the delipidation of mature fat cells. It is suggested that TNF alpha may be involved in the physiological control of human adipose tissue cellularity and function.  相似文献   

9.
10.
Genotypes of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) loci were determined, using allele specific oligonucleotides. Gene frequencies of ADH2(1) and ADH2(2) were 0.29 and 0.71, respectively, in the Japanese control group. No significant difference was found in the ADH2 genotype between the patients and the control group. Gene frequency of ALDH2(1) and ALDH2(2) were 0.65 and 0.35 in the control group, while 0.93 and 0.07, respectively in the patient group. Most of the patients, 20 out of 23, were homozygous Caucasian type. All individuals with homozygous atypical ALDH2(2)/ALDH2(2) and most of those with heterozygous atypical ALDH2(1)/ALDH2(1) were alcohol flushers, while all of the usual ALDH2(1)/ALDH2(1) were nonflushers. The results indicate that Japanese with the atypical ALDH2(2) allele are at a much lower risk in developing alcoholic liver disease than those with usual ALDH2(1)/ALDH2(1), presumably due to their sensitivity to alcohol intoxication.  相似文献   

11.
Independent transgene insertions differ in expression based on their location in the genome; these position effects are of interest because they reflect the influence of genome organization on gene regulation. Position effects also represent potentially insurmountable obstacles to the rigorous functional comparison of homologous genes from different species because (i) quantitative variation in expression of each gene across genomic positions (generalized position effects, or GPEs) may overwhelm differences between the genes of interest, or (ii) divergent genes may be differentially sensitive to position effects, reflecting unique interactions between each gene and its genomic milieu (lineage-specific position effects, or LSPEs). We have investigated both types of position-effect variation by applying our method of transgene coplacement, which allows comparisons of transgenes in the same position in the genome of Drosophila melanogaster. Here we report an experimental test for LSPE in Drosophila. The alcohol dehydrogenase (Adh) genes of D. melanogaster and Drosophila affinidisjuncta differ in both tissue distribution and amounts of ADH activity. Despite this striking regulatory divergence, we found a very high correlation in overall ADH activity between the genes of the two species when placed in the same genomic position as assayed in otherwise Adh-null adults and larvae. These results argue against the influence of LSPE for these sequences, although the effects of GPE are significant. Our new findings validate the coplacement approach and show that it greatly magnifies the power to detect differences in expression between transgenes. Transgene coplacement thus dramatically extends the range of functional and evolutionary questions that can be addressed by transgenic technology.  相似文献   

12.
The toxicity of the first eight primary alcohols and of four secondary alcohols was compared in a wild-type strain (having active ADH) and an ADH-negative mutant. Differences between LC50 measured in the two strains allowed an evaluation of the biological activity of the enzyme. In vitro, ADH is mainly active on secondary alcohols, while in vivo its main role is the detoxification and metabolism of ethanol. These observations suggest that originally ADH was involved in unknown metabolic pathways and that its utilization in ethanol metabolism could be a recent event.  相似文献   

13.
The promoter of alcohol dehydrogenase I of the yeast Saccharomyces cerevisiae was studied using Bacillus amyloliquefaciens alpha-amylase as a marker protein. On glucose, activity of the original ADH1 promoter decreases during late exponential, ethanol production growth phase. When 1100 bp (from -414 bp to -1500 bp) of the upstream sequence are deleted, activity increases into the late ethanol consumption phase but the promoter becomes active only after ethanol production growth phase (Ruohonen et al. (1991) Yeast 7, 337-346). We have now restored 300 bp (from -414 bp to -700 bp) upstream of the deletion site and obtained expression from the ADH1 promoter throughout the yeast growth cycle. The restored sequence allowed alpha-amylase expression to start during early exponential growth phase indicating that it is required for activation of the ADH1 promoter during ethanol production growth phase, possibly through glucose induction. On ethanol, all the promoters were active, but the short promoter was temporally activated first, suggesting that the restored sequence is not required for promoter activity during early oxidative growth.  相似文献   

14.
Alcohol dehydrogenase (ADH) of acetic acid bacteria functions as the primary dehydrogenase of the ethanol oxidase respiratory chain, where it donates electrons to ubiquinone. In addition to the reduction of ubiquinone, ADHs of Gluconobacter suboxydans and Acetobacter aceti were shown to have a novel function in the oxidation of ubiquinol. The oxidation activity of ubiquinol was detected as an ubiquinol:ferricyanide oxidoreductase activity, which can be monitored by selected wavelength pairs at 273 and 298 nm with a dual-wavelength spectrophotometer. The ubiquinol oxidation activity of G. suboxydans ADH was shown to be two times higher in 'inactive ADH', whose ubiquinone reductase activity is 10 times lower, than with normal 'active' ADH. No activity could be detected in the isolated subunit II or subunit I/III complex, but activity was detectable in the reconstituted ADH complex. Inactive and active ADHs exhibited a 2-3-fold difference in their affinity to ubiquinol despite having the same affinity to ubiquinone. Furthermore, the ubiquinol oxidation site in ADH could be distinguished from the ubiquinone reduction site by differences in their sensitivity to ubiquinone-related inhibitors and by their substrate specificity with several ubiquinone analogues. Thus, the results strongly suggest that the reactions occur at different sites. Furthermore, in situ reconstitution experiments showed that ADH is able to accept electrons from ubiquinol present in Escherichia coli membranes, suggesting the ubiquinol oxidation activity of ADH has a physiological function. Thus, ADH of acetic acid bacteria, which has ubiquinone reduction activity, was shown to have a novel ubiquinol oxidation activity, of which the physiological function in the respiratory chain of the organism is also discussed.  相似文献   

15.
The relative band staining intensities of ADH isoenzymes in wheat and triticale suggest alloploid genome interactions. Rye ADH is scarecely affected by anti-wheat-ADH. Despite the evolutionary divergence of their Adh genes, ADH monomers of wheat and rye form enzymatically active heterodimers in triticale.  相似文献   

16.
Two genes coding for isozymes of alcohol dehydrogenase (ADH); designated PsADH1 and PsADH2, have been identified and isolated from Pichia stipitis CBS 6054 genomic DNA by Southern hybridization to Saccharomyces cerevisiae ADH genes, and their physiological roles have been characterized through disruption. The amino acid sequences of the PsADH1 and PsADH2 isozymes are 80.5% identical to one another and are 71.9 and 74.7% identical to the S. cerevisiae ADH1 protein. They also show a high level identity with the group I ADH proteins from Kluyveromyces lactis. The PsADH isozymes are presumably localized in the cytoplasm, as they do not possess the amino-terminal extension of mitochondrion-targeted ADHs. Gene disruption studies suggest that PsADH1 plays a major role in xylose fermentation because PsADH1 disruption results in a lower growth rate and profoundly greater accumulation of xylitol. Disruption of PsADH2 does not significantly affect ethanol production or aerobic growth on ethanol as long as PsADH1 is present. The PsADH1 and PsADH2 isozymes appear to be equivalent in the ability to convert ethanol to acetaldehyde, and either is sufficient to allow cell growth on ethanol. However, disruption of both genes blocks growth on ethanol. P. stipitis strains disrupted in either PsADH1 or PsADH2 still accumulate ethanol, although in different amounts, when grown on xylose under oxygen-limited conditions. The PsADH double disruptant, which is unable to grow on ethanol, still produces ethanol from xylose at about 13% of the rate seen in the parental strain. Thus, deletion of both PsADH1 and PsADH2 blocks ethanol respiration but not production, implying a separate path for fermentation.  相似文献   

17.
A survey of biochemical polymorphism among glucose- and non-glucose-metabolizing enzymes was carried out on the June 1973 collection from the South Amherst, Mass. Drosophila melanogaster natural population. Polymorphic levels are among the highest recorded for this species; polymorphism among glucose-metabolizing enzymes did not differ significantly from that among non-glucose-metabolizing enzymes. Two loci, G6Pd on the X and Est-6 on the 3rd chromosome, displayed significant excesses of heterozygotes. Adh on the 2nd and Idh, Odh and Ao on the 3rd chromosome showed significant heterozygote deficiencies. Idh is ten map units to the left of Est-6, Odh twelve map units to the right and Ao is seven units beyond Odh. Temperatures in the two-week June period prior to collection were exceedingly variable. Daily high/low ranged between 76 degrees/40 degrees and 97 degrees/65 degrees F. These results support the findings of Frydenberg and Simonsen (1973) that in some populations glucose-metabolizing enzymes tend to be as polymorphic as non-glucose-metabolizing ones. They also add to the evidence obtained from other plant and animal populations that increased biochemical polymorphism is associated with more variable and/or colder climates. The increase may in part be due to increased polymorphism among glucose-metabolizing enzymes. Comparisons utilizing published data on other D. melanogaster populations and on D. robusta indicate a clinal increase in heterozygosity among glucose-metabolizing enzymes as one moves northward.  相似文献   

18.
19.
The purpose of the present study was to develop a physiologically based pharmacokinetic (PBPK) model in the mouse and to utilize it to evaluate the relative contribution, if any, of gastric alcohol dehydrogenase (ADH) to the bioavailability of ethanol. The PBPK model developed in Swiss Webster male mice accurately simulated blood and brain ethanol concentrations following an intraperitoneal administration of 0.82 and 3.2 g of ethanol/kg body weight. Application of the model illustrated that inclusion of gastric ADH into the model provided a less accurate fit to the experimental data, and therefore gastric ADH did not contribute to the overall disposition of an orally administered ethanol dose of 0.75 g/kg. Furthermore, the model also indicated that changes in percentage cardiac output to the liver had a minimal effect on the blood ethanol concentration (BEC) time curve. The results illustrate the validity of the PBPK model developed for ethanol and demonstrate that in the Swiss Webster male mouse the bioavailability of ethanol is minimally affected, if at all, by metabolism by gastric ADH.  相似文献   

20.
Malic dehydrogenase (MDH) studied in water and reversed micelles upon pressure application revealed a difference in catalysis. Whereas MDH in water appeared to be not sensitive to the pressure increasing, the catalytic activity of MDH in reversed micelles showed bell-shaped dependencies both on pressure and surfactant hydration degree, w0. The catalytic activity of MDH was found to be maximal under moderate pressure equal to 300-500 bar and at w0 approximately 14 with the difference between lowest and highest levels of the catalytic activity amounted to about 10 times. The work presented demonstrates for the first time the co-operative effect of reversed micelles and pressure application to malic dehydrogenase leading to the enzyme regulation that cannot be realized in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号