共查询到19条相似文献,搜索用时 125 毫秒
1.
以工业级五氧化二钒(V2O5)和纳米碳黑为原料,在氮气气氛下利用碳热还原法合成了碳氮化钒(V(C1-xNx))粉末。通过XRD、SEM测试方法对不同配碳量、不同反应温度下的反应产物进行了表征,结果表明:按配碳量为24.8%的化学计量配比的原料在1200~1250℃的温度范围内反应后可获得物相单一、含氮量相对较高、平均粒径大约为500nm的V(C1-xNx)固溶体粉末;低于1150℃的温度下合成的粉末中含有未反应完全的氧化物存在;高于1250℃的温度下反应开始向碳化方向转变,导致x值降低,且粉体颗粒间存在桥联和熔融现象。 相似文献
2.
3.
4.
5.
以Cr2O3、Ta2O5和纳米碳黑为原料,在开放体系的流动N2气氛条件下,采用碳热还原氮化法制备出了(Cr,Ta)2CN固溶体粉末,利用XRD、SEM、EDS等分析测试手段对制备过程中的物相演变规律和微观形貌变化进行了研究。研究结果表明,碳热还原氮化法制备(Cr,Ta)2CN固溶体粉末过程中物相演变顺序为Cr2O3、Ta2O5、C→Cr2O3、Cr3C2、Cr7C3、Cr Ta O4、C→Cr2O3、Cr7C3、Cr Ta O4→(Cr,Ta)2CN。在N2流量为500 m L/min、烧结温度为1 500℃保温2 h的条件下,可制备出粒度约5μm、游离碳和氧含量分别为0.16%,0.085%的单相(Cr,Ta)2CN固溶体粉末。 相似文献
6.
7.
8.
通过碳热还原氮化法合成了不同钛含量的(V,xTi)(C,N)(x=5%、10%、15%(质量分数))固溶体粉末晶粒细化剂,并考察了它们对WC-8%Co硬质合金显微组织和机械性能的影响。结果表明,与V(C,N)或者V(C,N)/Ti(C,N)混合晶粒细化剂相比,(V,Ti)(C,N)固溶体粉末可以显著地提高WC-8%Co硬质合金的机械性能;当加入0.5%(质量分数)的(V,5Ti)(C,N)固溶体粉末时,WC-8%Co硬质合金的抗弯强度和硬度分别达3490MPa、1804HV30,WC平均晶粒尺寸约为0.5~0.6μm。 相似文献
9.
碳热还原/氮化合成Si3N4在1 300~1 600℃下N2或N2-H2混合气中进行。反应物由非晶Si O2与C粉以1∶4.5摩尔比混合、压片。产生的CO由红外传感器监测,样品中氧、氮、碳含量由LECO元素分析仪测得,混合物各相由X射线衍射(XRD)检测。Si O2还原反应在1 300℃以下开始,速率随温度升高增大;温度高于1 570℃时,速率因反应物表面被生成物覆盖降低。由于还原产物CO平衡分压差别小,选择生成Si3N4或Si C的临界温度不明显。碳热还原/氮化法合成氮化硅的原理需进一步探讨。 相似文献
10.
在开放体系下,采用碳热还原氮化的方法制备出了(Ti、W、Mo、V)CN固溶体粉末。结合XRD、SEM等分析测试手段对该过程中的物相以及显微形貌的演变进行了研究。结果表明(Ti、W、Mo、V)CN合成过程中物相演变遵循以下顺序:TiO2(anatase)→TiO2(rutile)→Ti4O7→Ti3O5→Ti(N、O)→(Ti、Mo…)N→(Ti、W、Mo、V)CN,1700℃可合成相组成单一、游离碳和氧分别为0.11%、0.28%的(Ti、W、Mo、V)CN固溶体粉。 相似文献
11.
Ti(C,N)基金属陶瓷的研究进展 总被引:1,自引:0,他引:1
介绍了Ti(C,N)基金属陶瓷的晶体结构和高温力学性能,综述了其主要制备方法和研究进展,详细地分析了其冶金机理和相结构特点,并讨论了环型相的形成机理及缺点,最后指出了Ti(C,N)基金属陶瓷研究方向和提高其性能的基本途径,并认为系统考虑其相平衡、粉末冶金机制和加工工艺是制备性能优良的Ti(C,N)基金属陶瓷刀具和涂层的关键. 相似文献
12.
13.
14.
纳米TiC增强Ti(C、N)基金属陶瓷材料的组织与性能研究 总被引:4,自引:0,他引:4
采用自制的纳米TiC粉末制备Ti(C、N)基金属陶瓷。研究了纳米粉末对金属陶瓷组织及性能的影响。结果表明,粉末冶金过程中,纳米TiC粉末易于在粘结相中扩散与溶解及沿晶界分布.降低了硬质相在粘结相中的溶解度.抑制了晶粒长大,同时微观上造成局部富C和稳定了硬质相中的C含量,使金属陶瓷材料的环形相增多尺寸增厚。抗弯强度与晶粒尺寸满足于Hall-Petch公式,5%~10%(质量分数)的纳米粉末加入量可使金属陶瓷的抗弯强度得到较大的提高,但硬度与晶粒尺寸的关系反Hall-Petch公式。 相似文献
15.
16.
17.
18.
Ti(C,N)基金属陶瓷界面问题的研究进展 总被引:2,自引:0,他引:2
对Ti(C,N)基金属陶瓷的界面结构特点及界面上的成分分布、界面上Rim相(环形相)的形成机理、影响界面上环形相及界面上的成分分布的主要因素进行了评述。最后指出了金属陶瓷界面研究方面应该注意的问题。 相似文献