首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对直流微电网中微电源功率输出不稳定以及负荷波动导致直流母线电压偏移问题,提出一种含超级电容和蓄电池的混合储能系统充放电控制策略。该控制策略将储能系统分为5种工作模式,控制系统根据直流母线电压值选择混合储能系统的工作模式,实现蓄电池与超级电容在充电、放电及空闲模式间自由切换,从而维持直流母线电压稳定。通过Matlab/Simulink软件搭建系统模型,仿真结果表明,采用该控制策略可使直流母线电压保持在电压偏移允许范围内。  相似文献   

2.
基于电压下垂法的直流微电网混合储能系统控制策略   总被引:2,自引:0,他引:2  
以稳定直流母线电压和优化蓄电池工作过程为目的,提出了一种基于电压下垂法的直流微电网混合储能控制策略。该控制策略根据直流母线电压信息,利用超级电容快速补偿母线功率缺额的高频部分;通过蓄电池对超级电容进行能量补充,间接补偿母线功率缺额的低频部分;利用超级电容电压不能突变的特点,实现对蓄电池电流的平滑控制。控制系统以直流母线电压、超级电容电压及蓄电池荷电状态为判断条件,自动切换工作模式。实验表明,该控制策略可自动调节蓄电池和超级电容出力,维持直流母线电压在额定值附近小范围波动,有效地减小了蓄电池充放电次数,延长其使用寿命。  相似文献   

3.
在含新能源的直流微电网系统中,储能系统要同时具备高功率密度和高能量密度的特点,单种储能元件往往难以满足要求,蓄电池与超级电容在性能上具有很强的互补性。将蓄电池与超级电容相连接构成混合储能模块,蓄电池稳定直流母线电压以维持母线上能量供需平衡,超级电容迅速提供或吸收负载波动功率高频分量,以抑制负载或新能源功率突变对直流母线造成的冲击。提出了含分布式发电单元的微电网系统并网运行时各储能单元和直流母线电压的控制策略。实验表明,该控制策略可控制蓄电池和超级电容出力,维持直流母线电压在额定值附近小范围波动,改善系统输出电能质量,提高系统的可靠性和稳定性。  相似文献   

4.
针对直流微电网中光伏发电单元出力的波动性和间歇性造成系统内部功率不平衡的问题,混合储能系统可以同时发挥蓄电池高能量密度和超级电容高功率密度的优势,根据直流母线电压进行混合储能单元间的协调控制策略。该策略将直流母线电压进行分层控制,采用四个电压阈值共分成五个控制区域,以直流母线电压为信息载体,决定储能系统的运行状态,实现对混合储能单元的充电、放电模式间自主切换。电压分层控制有效地避免了蓄电池由于电压波动而频繁进行充放电切换,从而延长了电池的使用寿命。最后,MATLAB/Simulink的仿真结果验证了所提控制策略的可行性。  相似文献   

5.
为保证微电网系统稳定运行、各发电单元之间功率平衡以及输出电能质量良好,采用混合储能装置作为含光伏发电微电网系统的储能部分。提出了含光伏发电单元的微电网系统并网运行时各储能单元和直流母线电压的控制策略。当光伏发电并网系统的能量管理采用功率分配型控制策略时,直流母线电压幅值的稳定受发电单元侧控制,通过控制微电源与三相逆变器输送给电网能量之间的平衡来保持直流母线电压稳定;当新能源或本地负载功率发生突变时,由于蓄电池和超级电容储能装置具有较好的能量互补特点,通过控制蓄电池吸收或释放低频功率,超级电容吸收或释放高频功率,可以抑制负载突变对直流母线造成的冲击。仿真和实验结果表明,上述控制策略能有效、快速地调节系统有功、无功功率输出,抑制微电网系统负荷突变引起的功率波动,改善系统输出电能质量,提高系统的可靠性和稳定性。  相似文献   

6.
为了平抑间歇性微电源引起的功率波动,研究了基于超级电容和蓄电池的混合储能电压源逆变器(VSI)控制策略,设计了混合储能系统两级能量管理方法。将超级电容作为系统一级缓冲储能优先平抑微电网功率波动。并网运行时配电网作为二级储能,通过控制联络线功率,使超级电容端电压稳定在充放电限值以内,同时维持公共连接点(PCC)母线电压在允许范围内变化;孤岛运行时蓄电池作为二级储能,通过超级电容的缓冲作用减少蓄电池充放电次数,延长蓄电池使用寿命,当超级电容达到充放电警戒值时,精确控制蓄电池以恒功率输出,调节超级电容端电压恢复到正常值。仿真结果验证了方法的有效性。  相似文献   

7.
随着光伏发电和直流微电网的发展,以光伏电池作为主要电能来源的直流微电网将会有更多的研究应用, 然而光照强度和温度等变化使得光伏电池输出功率波动,这将引起直流母线电压剧烈波动,威胁直流微电网的安全稳定运行.针对光伏输出功率导致的母线电压波动问题,提出基于聚类经验模态分解 (EnsembleEmpiricalModeDecomposition,EEMD)进行频率分配的混合储能系统控制策略,将光伏原始输出功率中的高频分量作为超级电容响应的指令功率,提升了混合储能对电压波动的抑制效果,维持直流母线电压稳定.仿真试验结果表明,所提方法能够发挥超级电容响应速度快的优势,使超级电容响应高频波动功率,平抑直流母线电压波动,同时减少蓄电池充放电次数,延长蓄电池的使用寿命。  相似文献   

8.
为抑制直流微电网母线电压波动,保障直流微电网稳定安全运行,提出一种混合储能系统惯性控制策略, 实现控制混合储能系统产生虚拟惯性来更好地维持直流母线电压稳定.该控制策略采用下垂控制和虚拟直流发电机控 制共同构成混合储能惯性控制策略,使得 DC/DC变换器不仅保有下垂特性还具有惯性特性.在 MATLAB/Simulink 平台上进行仿真试验,仿真试验结果表明通过下垂+虚拟直流发电机的惯性控制方法,实现了直流微电网中各模块按 下垂系数进行功率分配的同时,混合储能系统能更好地响应直流母线上的功率波动,大幅度减小母线电压波动,并平 滑蓄电池的功率输出,延长蓄电池的使用寿命。  相似文献   

9.
超级电容-蓄电池混合储能系统同时具有能量密度高和功率密度高的特点,适用于平抑含有大量分布式能源接入的低压直流配电网的电压波动。提出了一种基于混合储能的母线电压分区控制策略,对母线电压实施5层电压控制,蓄电池用于稳定波动较小时的母线电压,超级电容平抑母线电压波动较大时的功率差额,给出了一种根据母线电压波动的极端情况配置超级电容容量的方案。经Matlab/Simulink仿真,验证了该控制策略的可行性。  相似文献   

10.
直流微电网储能系统自动充放电改进控制策略   总被引:2,自引:0,他引:2  
针对直流微电网中直流微电源输出不稳定造成的网内功率不平衡及直流母线电压大范围波动问题,基于含光伏阵列和储能系统的直流微电网系统,提出了一种储能系统自动充放电改进控制策略。该控制策略将直流母线电压用4个电压临界值分成5个区域,控制系统根据直流母线电压所处区域自动判断储能系统的工作模态和模态切换,实现储能系统在充电、放电及空闲模式间自由切换;同时避免了由于直流母线电压正常波动引起的储能系统充放电频繁切换对蓄电池造成的损害。dSPACE实验验证了该策略的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号