首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
薄壁管数控弯曲成形中的柔性芯模是影响薄壁管成形质量的关键因素。利用有限元分析软件Dynaform建立了高强度薄壁管数控弯曲过程的有限元模型,并对其可靠性进行实验验证。研究了芯棒与管材间隙、球芯棒个数、球芯棒与管材间隙、芯棒与管材摩擦条件等芯模参数对高强度薄壁管数控弯曲过程中壁厚变化和截面畸变的影响规律。结果表明:随着芯棒与管材间隙的增大,壁厚减薄率减小,截面畸变率增大不明显,芯棒与管材间隙主要影响管材弯曲结束位置;随着球芯棒个数的增加,壁厚减薄率增大,截面畸变程度减小;随着球芯棒与管材间隙的增大,壁厚减薄率减小,截面畸变率增大;芯棒与管材内壁的摩擦越小,越有利于降低壁厚减薄率。  相似文献   

2.
《塑性工程学报》2020,(1):27-37
基于ABAQUS有限元分析软件,首先计算和分析了在变弹性模量和常弹性模量条件下的21-6-9高强不锈钢管绕弯成形过程,并将两种情况下的模拟结果与实验结果进行对比验证,发现采用变弹性模量可使截面畸变率和壁厚减薄率的预测精度分别提高31. 8%和11. 8%。然后在变弹性模量条件下研究了几何参数对管材绕弯成形截面畸变和壁厚减薄的影响。结果表明,当弯曲角不大于45°时,截面畸变率曲线和壁厚减薄率曲线均呈抛物线状;当弯曲角大于45°时,截面畸变率从弯曲平面到初始弯曲平面的分布呈先快速增加,后缓慢减小,再缓慢增加,最后急剧减小的特征;壁厚减薄率从弯曲平面到初始弯曲平面的分布呈先急剧增加,后趋于稳定,最后急剧减小的特征。截面畸变率和壁厚减薄率随相对弯曲半径的减小而增加,相对弯曲半径以不小于2. 0为宜;截面畸变率随管材壁厚的减小,直径的增加或直径和壁厚的等比例增加而增加;壁厚减薄率随管材壁厚的增加先增加后减小,随管材直径的增加或直径和壁厚的等比例增加而减小。  相似文献   

3.
基于ABAQUS/Explicit平台,建立了TA18高强钛管数控弯曲成形过程三维有限元模型,并验证了模型的可靠性;采用该模型模拟分析了模具与管材之间的间隙对TA18高强钛管数控弯曲成形截面畸变和壁厚变化的影响规律。结果表明:减小芯棒/管材的间隙、弯曲模/管材的间隙和压块/管材的间隙可以降低截面畸变程度;减小弯曲模/管材的间隙、压块/管材的间隙或增加芯棒/管材的间隙可以减小壁厚减薄率;增大弯曲模/管材的间隙、芯棒/管材的间隙和压块/管材的间隙可以降低壁厚增厚率;防皱块/管材的间隙对截面畸变和壁厚变化影响不大。获得了较佳的芯棒/管材的间隙值、弯曲模/管材的间隙值、压块/管材的间隙值和防皱块/管材的间隙值,分别为0.075、0.1、0.1和0.1 mm。  相似文献   

4.
建立了Ti-2Al-2.5Zr(TA16)钛合金管材数控弯曲成形过程的有限元模型,并通过实验验证了该有限元模型的有效性。基于建立的模型研究了管模间隙在数控弯曲过程中对截面畸变率和管材壁厚变化的影响规律,并利用熵值法得到了最佳的管模间隙值。结果表明:减小管材/弯曲模间隙和管材/压块间隙以及增大管材/防皱块间隙可以降低外侧壁的减薄率,随着管材/芯轴间隙的增加,外侧壁的减薄率先减小后增大;增大管材/弯曲模间隙和减小管材/芯轴间隙可以降低内侧壁的增厚率;减小管材/弯曲模间隙和管材/芯轴间隙可以有效地降低截面畸变率;改变管材/压块间隙和管材/防皱块间隙对内侧壁增厚率和截面畸变率的影响不明显。通过熵值法获得了较佳的管材/弯曲模间隙为0.10 mm,管材/芯轴间隙为0.10 mm,管材/压块间隙为0.05 mm,管材/防皱块间隙为0.15 mm。  相似文献   

5.
《锻压技术》2021,46(4):127-136
为提高不锈钢薄壁管材自由弯曲的成形质量,在管材内部加入芯棒以降低自由弯曲管材起皱和截面畸变的程度。建立了内置芯棒下自由弯曲成形的力学模型,采用有限元模拟与成形实验相结合的方法,研究了芯棒位置、芯球个数,以及芯棒与管材内壁间隙对自由弯曲成形过程中不锈钢薄壁管材应力、应变分布,截面畸变率和壁厚分布的影响规律。研究结果表明:位于管材变形区的芯球可对薄壁管材内壁起支撑作用;在保证芯球间互不干涉的情况下,芯球数量越多,对管材成形质量的改善程度越大;当芯棒与管材间隙处于合理范围时,自由弯曲成形后的管材外侧壁厚减薄率和截面畸变率较小。  相似文献   

6.
内压对薄壁管充液压弯时的影响   总被引:2,自引:0,他引:2  
失稳起皱和截面畸变是薄壁管弯曲成形过程中的主要缺陷,通过数值模拟和实验的方法,研究了液压支承下管材的弯曲变形行为,进行了从无内压到内压为18MPa的管材充液弯曲成形,分析了充液弯曲成形过程中的内压值对成形的影响,给出了成形后的不圆度和典型点壁厚减薄率的变化规律,结果显示,随着充液压力的增加,管材的截面不圆度逐渐减小,管材内侧壁厚增厚趋势减小,外侧壁厚减薄趋势增大。并根据模拟结果给出了成形后的典型点的应力状态。  相似文献   

7.
利用有限元模拟软件ABAQUS建立了0Cr21Ni6Mn9N不锈钢管材的数据弯曲、抽芯及回弹全过程有限元模型,并对其可靠性进行了验证;研究了芯棒伸出量e对横截面畸变、壁厚变化、起皱趋势和回弹角的影响规律。结果表明,随着芯棒伸出量的增大,管材横截面畸变率和回弹角减小,当芯棒伸出量大于2.5 mm时,管材出现"鹅头"现象;外侧壁厚减薄率随着芯棒伸出量的增大而增大,内侧壁厚增厚率随着芯棒伸出量的增大而有所减小,但减小趋势不明显;弯管内侧起皱趋势随着芯棒伸出量的增大先减小后增大;最后获得了合适的芯棒伸出量范围为1.5~2 mm。  相似文献   

8.
夏东强  温彤 《模具工业》2008,34(2):30-33
管材剪切弯曲能够实现普通冷弯方法不能达到的超小半径弯曲,是一项较为可行的技术。针对管材剪切弯曲成形的受力与变形特点,应用塑性有限元方法研究了剪切弯曲主要工艺参数对成形后管材壁厚变化及截面椭圆度的影响,分析了变形区不同位置椭圆度及壁厚的减薄情况。研究表明:t/D越大,壁厚减薄及截面椭圆度越大;而随着R/D的增大,截面椭圆度有减小的趋势,但壁厚减薄不明显。  相似文献   

9.
采用有限元模拟方法研究弯曲角度β、相对弯曲半径R/D和管材尺寸(直径D和壁厚t)的变化对高强TA18钛合金管数控弯曲成形质量的影响。结果表明:不同β下壁厚变化率Δt和截面畸变率ΔD的分布非常相似;Δt和ΔD随着R/D的增加而减小,且为了获得合格的弯管件,R/D必须大于2.0;壁厚减薄率Δt_o随着D或t的增加而略有增大,而壁厚增厚率Δt_i和ΔD随着D的增加或t的减小而增大;在相同的D/t下,即D和t按比例增加时,Δt_o和ΔD先减小后增加,而Δt_i增加。  相似文献   

10.
管材弯曲有限元仿真分析及试验研究   总被引:1,自引:1,他引:0  
利用有限元仿真分析方法对管材弯曲成形过程进行数值模拟,指出了弯曲过程中开裂、起皱、截面畸变等缺陷,分析了弯曲区域内管材壁厚变化规律.在此基础上进行工艺试验,并对试验后管材壁厚进行分析.试验结果与仿真分析结果吻合良好,两者均表明,弯曲过程中,弯角外侧管壁肇厚减薄,弯角内侧管壁壁厚增加,最大减薄和最大增厚均处于弯角中间部位.管材弯曲过程中,弯角外侧平均壁厚应变ε_t随着相对弯曲半径R/to的增大而减小;当R/to过小时,管壁外侧会过渡减薄,甚至破裂.  相似文献   

11.
管材弯曲中外侧壁厚变化的数值模拟   总被引:1,自引:1,他引:0  
回转牵引式弯曲成形是一种高质量、高效率的管材弯曲成形方式,能够有效地防止起皱、管壁的过分减薄和截面的椭圆化等成形缺陷.以圆形钢管为研究对象,采用有限元软件DEFORM-3D对弯曲成形过程进行数值模拟,找出管壁最大减薄处所在的位置,并获得滚珠与管壁的间隙、滚珠角速度及压力模速度对弯管外侧壁厚变化的影响规律.结果表明,随着滚珠与管壁间隙的增大,管壁受滚珠的影响变小,即壁厚变化较小;随着滚珠角速度的增大,壁厚变化先减小后增大,当滚珠角速度与弯曲模角速度大小相同时,壁厚变化最小;随着压力模速度的增大,壁厚变化渐渐变小,当压力模速度为64.28 mm·s-1时,壁厚变化最小.采用数值模拟后的优化参数在弯管机上进行试制,生产出合格件,模拟结果与实验结果基本吻合.  相似文献   

12.
内压对薄壁铝合金管材充液压弯过程的影响   总被引:3,自引:1,他引:2  
采用实验和数值模拟研究5A02铝合金薄壁管材充液压弯成形过程中内压对缺陷的影响规律,分析内压对弯曲内侧起皱、截面畸变及壁厚分布的影响,获得壁厚变化规律;通过数值模拟给出的应力状态,揭示缺陷形成机制。结果表明:提高内压能降低轴向压应力的绝对值,减小失稳起皱趋势,当内压超过一个临界值时,皱纹完全消除。对于直径为63 mm、壁厚为1 mm的5A02-O铝合金管材,其内压临界值为2.8 MPa。充液有效地减小截面畸变程度,随内压的增大,截面畸变程度逐渐减小。弯曲后,壁厚最大减薄点位于弯曲外侧点,且随内压的增大,轴向和环向拉应力均呈增大趋势,弯曲外侧壁厚度减薄的趋势也增大。  相似文献   

13.
基于ABAQUS/Explicit有限元软件平台,建立0Cr21Ni6Mn9N不锈钢管数控弯曲成形过程三维弹塑性有限元模型,对建模关键技术进行了处理,并对其可靠性进行了验证;模拟分析了几何参数和材料参数对弯管截面畸变的影响规律。结果表明,随着弯曲角度、相对管径的增大或相对弯曲半径的减小,截面畸变率增大;随着强度系数、屈服强度的增大或硬化指数、弹性模量的减小,截面畸变率增大。截面畸变率最大值出现在沿弯曲方向30°附近的区域,其位置不受几何参数和材料参数大小的影响。研究结果对提高管材数控弯曲成形质量及成形极限具有指导意义。  相似文献   

14.
薄壁管数控弯曲截面畸变的实验研究   总被引:5,自引:1,他引:5  
截面畸变是薄壁管小弯曲半径数控弯曲成形容易出现的成形缺陷之一。文章采用实验法,研究了芯头个数、芯棒伸出量、弯曲角度、压块润滑状态、相对弯曲半径、材料等因素对截面畸变的影响;并提出了减小截面畸变的有效措施。结果表明,增加芯头个数与芯棒伸长量都能减小弯管的截面畸变,但两者都导致弯管壁厚减薄量增大;随着弯曲角度的增加,截面畸变越严重,相对弯曲半径越小,无芯棒与芯头支撑段弯管的截面畸变愈严重;在压块无润滑情况下,弯管的截面畸变和壁厚减薄量都小,并且在同等弯曲条件下,1Cr18Ni9Ti弯管的截面畸变小于LF2M弯管。  相似文献   

15.
为了掌握芯棒参数对大口径薄壁钛管材冷推弯曲成形质量的影响规律,选取了直径为Ф219 mm、壁厚为3.2 mm的TA2管材为研究对象,基于DYANFORM有限元软件建立了TA2钛管材冷推弯曲有限元模型,并利用冷推实验验证了所建模型的可靠性。基于所建的有限元模型,研究了芯棒结构、芯棒直径、芯棒形式对大口径薄壁TA2管材冷推成形结果的影响规律。研究结果表明:阶梯式芯棒可以有效预防成形弯头起皱现象的发生;随着芯棒直径的减小,外弧侧壁厚减薄率先增大后减小,内弧侧壁厚增厚率和截面椭圆度均有增大的趋势,内间隙的合理取值区间为0.5~1.5;刚性芯棒和液压均可以有效限制截面畸变的发生。  相似文献   

16.
内径偏差和壁厚偏差是评价筒形件旋压成形质量的重要指标。针对Hastelloy C276大径厚比薄壁筒形件,建立了三维弹塑性有限元模型,采用正交设计法安排试验,研究了减薄率、进给率、坯模间隙和芯模转数对反旋成形内径偏差和壁厚偏差的影响规律。研究表明:减薄率和进给率对成形质量影响显著,而坯模间隙和芯模转数影响相对较小。随着减薄率的增大,内径偏差和壁厚偏差增大;随着进给率的增大,内径偏差减小而壁厚偏差增大;随着坯模间隙的增大,内径偏差增大;随着芯模转速的增大,内径偏差先增大后减小。  相似文献   

17.
薄壁管数控绕弯成形壁厚减薄的主要影响因素研究   总被引:1,自引:0,他引:1  
针对薄壁圆管数控绕弯精确成形过程在多因素作用下容易出现外侧壁厚减薄的物理过程,基于Dynaform建立了数控绕弯三维有限元模型并验证了模型的可靠性.研究了材料参数、顶推装置、弯曲角度、相对弯曲半径、芯棒伸出量、芯头个数对管材数控绕弯成形外侧壁厚减薄的影响规律.结果表明:LF2M铝合金比1Cr18 Ni9Ti不锈钢减薄严重,但是截面畸变程度小于1Cr18Ni9Ti;相比尾部没有安装顶推装置的管坯,加装了顶推的弯管壁厚减薄率降低了大约5%;随着弯曲角度和弯曲半径的增大,减薄率也逐渐增大;芯棒伸长量和芯头个数也是影响减薄的重要因素,芯棒伸出越多,弯管壁厚减薄率越大,增加芯头也会增大减薄率.  相似文献   

18.
基于动态显式有限元ABAQUS/Explicit,建立了管材多点成形过程的三维有限元模型,模拟分析管壁厚度、曲率半径和管坯的材料参数对管件壁厚的影响规律。结果表明,管壁厚度的增加和曲率半径的增大,有助于控制管件壁厚减薄,但管壁厚度对壁厚减薄的影响不显著,而随着曲率半径的增大,壁厚减薄率变化比较明显;在管件的截面畸变发生前,壁厚减薄量增大较快;合理地选择材料,可以有效地预防管件破裂的产生。该研究结果对管材多点成形参数的确定,具有指导作用。  相似文献   

19.
基于Abaqus有限元平台建立了0Cr18Ni9不锈钢管大曲率无芯弯曲有限元模型,分析了管材与模具间隙对管材弯曲成形性的影响,同时验证了模型可靠性。结果表明:弯管外凸侧壁厚减薄率与管-弯曲模间隙、管-压力模间隙呈正相关关系,而与管-防皱模间隙呈负相关关系;弯管内凹侧壁厚增厚率与管-弯曲模间隙、管-防皱模间隙呈正相关关系,而与管-压力模间隙呈负相关关系;弯管横截面椭圆度与管-弯曲模间隙、管-压力模间隙呈正相关关系,而与管-防皱模间隙呈负相关关系;管材与模具间隙对壁厚减薄率及横截面椭圆度影响的趋势一致。  相似文献   

20.
利用Abaqus有限元软件对新型耐蚀Ti35合金管材的数控弯曲过程进行了模拟研究。研究了弯曲角度、芯棒伸出量、压块相对助推速度和相对弯曲半径对Ti35合金管材成形结果的影响。结果表明,Ti35合金管材数控弯曲截面扁化率和回弹角随弯曲角度的增大而增大;弯曲变形越剧烈(如减小弯曲半径、压块相对助推速度,或增大芯棒伸出量),壁厚减薄率越大,回弹角越小。截面扁化率随芯棒伸出量、相对弯曲半径的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号