首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以硫酸镍、次亚磷酸钠、钨酸钠、钼酸钠等为原料,采用一步恒电流电沉积法在泡沫镍基底上合成Ni-P-W-Mo析氢电极,借助X射线衍射、扫描电镜、能谱仪、X射线光电子能谱以及电化学测试等手段研究材料的表面形貌、元素组成以及电化学析氢性能。结果表明,Ni-P-W-Mo析氢电极在碱性溶液中析氢催化时有出色的催化活性和稳定性,仅需92 mV的过电位即可达到10 mA/cm2的电流密度,比Ni-P电极降低67 mV,电极的双层电容为42.98 mF/cm2,经过2 000次循环伏安(cyclic voltammetry, CV)测试后,析氢活性略微下降。Ni-P-W-Mo电极优异的催化性能可能是由于W、Mo的添加使电极的表面形貌更粗糙,电化学活性表面积和活性位点显著增加,同时自支撑电极结构可以有效降低界面传输电阻,提高电荷传输效率。  相似文献   

2.
简单的热处理和热处理磷化ZIF-67/氧化石墨烯(GO)前驱体得到具有典型的多孔碳结构特征的CoP/Co@NPC@rGO纳米复合材料电催化剂。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱(Raman)和N2等温吸脱附曲线等对其形貌、成分和结构进行分析和表征。采用线性扫描伏安法、电化学阻抗谱和计时电位法探讨了CoP/Co@NPC@rGO纳米复合电催化剂对氢气析出反应(HER)和氧气析出反应(OER)的电催化活性和稳定性。结果表明,CoP/Co@NPC@rGO?350在1.0 mol·L–1 KOH溶液中达到10 mA·cm?2电流密度的析氢过电位仅127 mV;同时,在1.0 mol·L–1 KOH溶液中显示出优于贵金属RuO2的析氧性能,达到10 mA·cm?2电流密度的过电位为276 mV,塔菲尔斜率仅为42 mV·dec?1。这种高析氢和析氧电催化活性主要归因于高度石墨化的N掺杂多孔碳与N掺杂石墨烯之间的协同效应。CoP/Co@NPC@rGO是电催化全解水电催化剂的候选材料,且为基于金属有机骨架(MOFs)/氧化石墨烯复合材料的高效电催化剂的设计开辟了一条新的途径。   相似文献   

3.
近年来,碳化钼(Mo2C)因其良好的稳定性及类Pt催化特性而广泛应用于电解水析氢领域,但Mo2C在高温制备条件下易过度生长导致其催化活性降低。为解决上述问题,以多糖瓜尔豆胶为碳源,利用其分子结构中丰富的羟基与钼酸根的强烈配位作用,抑制钼原子在高温处理过程中的团聚;同时,氮元素的引入能够进一步提高碳基底的电子转移速率及催化特性。结果表明,在800 ℃高温下可获得超细Mo2C@氮掺杂碳纳米片复合结构,该产物在碱性介质中,在10 mA/cm2的电流密度的过电位为163 mV,塔菲尔斜率为64.8 mV/(°)。同时材料体系表现出良好的稳定性,经过12 h的耐久性测试,电极材料电流密度无明显衰减。该制备方法的提出有望为其他超细金属碳化物体系的合成提供新的思路。   相似文献   

4.
为开发高效稳定的析氢电催化剂,采用恒电流电沉积法在镍网基底上制备自支撑的Ni-Sn-B析氢电极,通过扫描电镜、X射线衍射仪、透射电镜、X射线光电子能谱仪和电化学工作站等对电极的形貌结构、元素组成与电催化析氢性能进行表征和测试。结果表明,Ni-Sn-B电极表面由粗糙的胞状颗粒紧密堆积而成,具有非晶态特征结构。在碱性电解质中,Ni-Sn-B电极表现出优异的催化析氢活性和稳定性,在10m A/cm2电流密度下过电位仅为63 mV,比Ni-Sn和Ni-B电极的过电位分别降低38.2%和59.1%。电极的电荷转移电阻为1.56Ω,经过5 000次CV循环和72 h电解后,仍保持非常高的析氢活性。粗糙的表面形貌及非晶态结构使电极的电化学活性表面积和催化活性位点显著增加,同时B和Sn对Ni电子结构的调控,可有效降低电荷转移阻力,从而提升电极的电催化析氢性能。  相似文献   

5.
采用类沸石咪唑酯骨架化合物ZIF-67(zeolitic imidazolate framework-67)和六水合硝酸钴为原料制备金属-有机物框架材料(metalorganicframeworks,MOF),经过高温煅烧及磷化,得到碳包覆磷化钴(CoP/C)粉体。用X射线衍射仪、扫描电镜及透射电镜对CoP/C粉末进行表征与分析,并进行电催化析氢实验。结果表明,高温煅烧后,ZIF-67的有机组分转化为导电炭骨架,钴离子转化为单质钴纳米颗粒嵌于炭骨架中,形成金属有机框架。经进一步磷化后,得到纯相CoP/C粉体。CoP/C粉末表现出良好的电化学析氢性能,其过电位为64 mV,塔菲尔斜率为66 mV/dec,历经15 h电催化析氢后仍保持高催化活性。  相似文献   

6.
采用高能球磨对商业二硫化钨进行活化处理,通过控制球磨工艺,制备出不同活化程度的WS2析氢电催化剂。通过XRD、Raman、SEM、TEM、XPS等系列表征和电化学分析,系统研究其成分结构与电催化析氢性能。结果表明:在酸性电解液中,350 r/min球磨活化处理12 h后的WS2样品表现出最佳析氢性能,其在电流密度为10 mA/cm2时的过电位η10为245 mV,塔菲尔斜率为141 mV/dec,远优于未球磨样品,其性能提升主要归因于球磨过程中的高能撞击产生强力剪切和剥离作用,使晶粒破碎细化,比表面积增大的同时产生大量的孔洞缺陷和空位,暴露出更多活性位点和边缘缺陷。  相似文献   

7.
采用水热和电化学沉积两步法制备泡沫镍(NF)负载的聚苯胺(PANI)包覆硒化镍(NiSe)析氢电极(PANI/Ni Se/NF),利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、X射线光电子能谱仪(XPS)以及电化学测试等手段对材料进行形貌、组成及电化学性能表征。结果表明,以氯化镍为镍源,用水热法可制备出泡沫镍负载的针状Ni Se,使用导电聚合物聚苯胺包覆不改变其形貌。PANI/Ni Se/NF电极的双电层电容为12 560μF/cm~2,大于NiSe/NF电极的9 200μF/cm~2,拥有更大的电化学活性面积,其析氢起始过电位比未包覆时降低了58 mV,Tafel斜率为133 mV/dec。电流密度为10 mA/cm~2时,PANI/Ni Se/NF电极的析氢过电位为203 mV,展示出优异的析氢催化活性。导电聚合物PANI的包覆不仅可提高硒化镍电极的析氢活性,而且可减小电荷转移电阻,加快电荷转移速率,并显著提高电极稳定性。  相似文献   

8.
以6061Al作为基质材料,利用液体冶金的搅拌铸造技术及挤压法制备Al2O3颗粒增强的金属基复合材料,选取6061Al添加3种质量分数为5%、10%和15%的Al2O3为研究对象,以改善6061Al/Al2O3复合材料的力学性能。通过SEM分析表明,Al2O3颗粒在6061Al金属基体中的分布相当均匀;由X射线衍射试验结果显示,复合材料中只有6061Al和Al2O3,且不会影响结晶性及6061Al的组织结构型态。试验结果表明,随着Al2O3添加量增加至15%,6061Al/Al2O3复合材料的硬度和抗拉强度均有较大提高,但伸长率略有下降,由于材料孔隙率的提升,致密度下降,从而引起材料的硬度略微下降;分析磨损量与Al2O3添加量及磨损率与滑动距离的关系,结果显示商用6061Al的磨损率最大,而6061Al/Al2O3(15%)复合材料的磨损量最小,并且磨损率最低,这是由于在6061Al中加入Al2O3颗粒,Al2O3颗粒的存在可以减少磨粒对基体的犁削作用,有效提高基体的耐磨性。深入探讨Al2O3颗粒增强的金属基复合材料,发现颗粒增强体以很细的粉末(一般在20 μm以下)加入到金属基中起到提高硬度、强度和耐磨性的作用;然而,Al2O3添加量越来越大时,其对6061Al系列材料的硬度、强度和耐磨耗性等性能将起到负面作用。  相似文献   

9.
传统的质子交换膜燃料电池阴极铂碳催化剂虽然具有较高的氧还原活性,但其稳定性还需要进一步提高。本文通过加入富含氧缺陷的CeO2纳米颗粒提高铂碳催化剂的氧还原活性和稳定性。研究表明采用共沉淀-酸处理法合成的CeO2纳米颗粒存在大量的Ce3+,说明该方法制备的CeO2中含有丰富的氧缺陷。将Pt或PtCo合金纳米颗粒负载在CeO2/C上制备成的催化剂显示了良好的性能:当C∶CeO2=2∶1(质量比)时,Pt-CeO2/C催化剂活性最高,半波电位达到了0.868 V,且催化稳定性较20%Pt/C大幅提高,经过1×104次连续循环后,20%Pt/C的质量活性衰减了82.2%,而Pt-CeO2/C催化剂的质量活性衰减仅为13.8%;以PtCo-CeO2/C(2∶1)为阴极催化剂的单电池最大输出功率为1.02 W·cm-2。  相似文献   

10.
沉积电流对Ni-Mo-Co合金析氢催化性能的影响   总被引:1,自引:0,他引:1  
采用电沉积方法在Cu基体上制备出Ni-Mo-Co三元合金电极,主要研究了沉积电流对Ni-Mo-Co合金电极析氢催化活性的影响。采用扫描电子显微镜和X射线衍射技术分别研究了Ni-Mo-Co合金镀层的表面形貌、元素组成和晶体结构,采用稳态极化曲线和交流阻抗技术研究了Ni-Mo-Co合金电极在30%KOH溶液中的析氢催化性能。结果表明:电沉积Ni-Mo-Co合金外观呈银白色,表面光滑细致,为非晶态结构。合金电极的析氢催化性能随着沉积电流的增大表现为先升高后降低的趋势,当沉积电流密度为15 mA.cm-2时,获得合金镀层具有最低的析氢过电位η100=139 mV,显示出良好的析氢催化活性。其析氢反应为Volmer-Heyvosky反应机制,主要受电化学脱附步骤控制。  相似文献   

11.
通过水热反应合成了TiO2柱撑石墨烯复合材料, 研究了TiO2纳米颗粒及TiO2柱撑石墨烯复合材料的制备以及光催化降解亚甲基蓝性能, 探讨了制备过程中水热反应时间、水热反应步骤对TiO2纳米颗粒的影响, 并在紫外光下考察了上述两种材料对光催化性能的影响。结果表明, 利用两步水热法且反应时间为10 h时为制备复合材料的最佳条件, 在紫外光的照射下, TiO2柱撑石墨烯复合材料在降解亚甲基蓝过程中显示出更高的光催化效率, 这项工作开辟了一条新的制备石墨烯–半导体复合材料的途径。  相似文献   

12.
通过电沉积的方法制备了Ni-Fe/TiO_2复合电极,采用阴极极化曲线和电化学阻抗谱的方法对电极的析氢催化性能进行了分析。结果表明:Ni-Fe/TiO_2复合电极的析氢催化性能优于Ni-Fe合金电极,TiO_2微粒作为第二相粒子可以增大电极的比表面积;Ti原子可以与H形成Ti-H_(ads)氢键,加快H_(ads)生成;TiO_2微粒可与Ni-Fe合金形成H_(ads)的复合脱附效应,使电极的析氢催化性能得到提高。随着镀液中TiO_2微粒添加量的增大,电极的析氢催化性能先增强后减弱。  相似文献   

13.
采用共沉淀法制备添加了La3+的LiNi0.8Co0.15Al0.05O2正极材料, 通过XPS、X射线分析仪、扫描电镜、电化学工作站、电池充放电测试系统详细地探讨了不同添加量的La3+对材料的结构、形貌和电化学性能的影响。结果显示, 与无添加的LiNi0.8Co0.15Al0.05O2正极材料比较, 添加了La3+的材料一次颗粒尺寸更大, 球形度更好且材料的电极Rsf+Rct阻抗均显示有所降低; 当添加x=0.01时, 材料的大电流循环稳定性得到了较大提升, 1 C条件下经过100次循环后, 添加La3+材料容量保持率为75.81 %, 而未添加材料容量保持率只有49.57 %; 添加了La3+材料制得的电池在0.5、1、5 C倍率下的放电比容量也要明显高于无添加材料。   相似文献   

14.
析氧反应(OER)是电解水制氢过程中的决速步,因此构建高效、低成本的非贵金属基OER电催化剂是实现氢能源高效制取的关键。通过两步水热法将Co元素引入到V2O5中,从而制备出了钒酸钴(Co3V2O8)纳米片结构,Co元素的引入使纳米片暴露更多的活性位点,并提高导电性加快了电荷传输,因而可提高其 OER性能。形貌和成分表征结果显示所制备的催化剂为正交晶系的 Co3V2O8纳米片结构。对该催化剂进行系统的 OER 性能研究,结果表明,Co3V2O8催化剂产生 10 mA·cm-2的析氧电流密度需要 364 mV的过电位,产生 100 mA·cm-2的析氧电流需要过电位仅为 540 mV,对应的 Tafel斜率为 62 mV·dec-1,此外,在经历 1000次循环测试后,该催化剂极化曲线不...  相似文献   

15.
采用微波合成技术合成锂离子电池正极材料LiFePO4,并进行碳掺杂,合成出复合材料LiFePO4/C.通过XRD,SEM和恒电流充放电实验,研究了材料结构形貌和电化学性能.结果表明,掺碳量4%时,采用40mA/g进行充放电,材料比容量可以达到109mAh/g,高倍率性能也有一定程度的提高.  相似文献   

16.
采用传统粉末冶金压制/烧结技术,经600 MPa压制、1140℃烧结制备了陶瓷颗粒增强(SiC、TiC及TiB2陶瓷颗粒,质量分数0~1.6%)Fe-2Cu-0.6C低合金钢复合材料,对三种复合材料的微观结构和力学性能进行了研究。结果表明:在烧结过程中,SiC与TiB2颗粒与基体发生反应,故而与基体界面结合良好;当添加质量分数为1.6%的SiC颗粒时,复合材料烧结后的布氏硬度与抗拉强度分别比基体提高了35.9%、69.4%;添加质量分数为1.2%的TiB2颗粒时,复合材料相对密度比基体提高了5.3%,其烧结硬度、抗拉强度与基体相比分别提高了77.9%、72.6%;由于烧结过程中TiC颗粒不与基体发生反应,故而添加TiC颗粒对复合材料的布氏硬度、抗拉强度影响不大。  相似文献   

17.
金属铜(Cu)是二氧化碳(CO2)还原为甲酸的常见催化剂,但是存在竞争析氢副反应(HER)严重和稳定性差等问题。引入第二金属的合金化策略可以有效改善上述问题,但是复杂的合成方法限制了电催化CO2还原技术中的实际应用。鉴于此,开发了一种简单、快速、低能耗的原电池沉积法,以还原电势差为反应驱动力,通过调节前驱体浓度在石墨烯基底上原位生长具有三维自支撑结构的铜铋(CuBi)双金属纳米枝晶(nCuBi-G/Cu foil)。研究表明:nCuBi-G/Cu foil结构中Bi作为电子供体向Cu提供电子,从而增加Cu中心电子密度,可以有效抑制CO2RR过程中的析氢反应,大幅提高甲酸产物的选择性,并且降低了电极表面的积碳浓度,提高CO2电催化反应的稳定性。此外,石墨烯导电基底可以加速CuBi和基底之间电子传递过程,改善CO2催化过程动力学,提高CO2RR活性。基于以上效应,nCuBi-G/Cu foil表现出95.9%的甲酸选择性,并且在此电压下可以稳定运行20 h,且...  相似文献   

18.
催化剂掺杂被认为是一种非常有效改善MgH2储氢性能的途径。研究结果表明,过渡金属对氢原子具有很强的亲和力,在氢分子的解离或者氢原子的重组过程中,过渡金属的d电子和氢原子/氢分子轨道上的电子发生转移填充,由此产生的相互作用力促进氢分子的解离和氢原子的重组;掺杂过渡金属氧化物同样可以有效地催化MgH2的吸放氢反应,而且在研磨过程中还可以作为润滑剂和分散剂,防止MgH2颗粒的团聚,细化MgH2颗粒尺寸,加速MgH2的氢解吸动力学,催化MgH2的吸放氢反应;过渡金属卤化物在吸放氢过程与MgH2反应生成的过渡金属氢化物能够促进氢分子的解离和氢原子的扩散、在氢化过程中促进形核、减小吸放氢反应的活化能;金属硫化物或金属氢化物与MgH2在球磨过程中的反应产物具有较高的催化活性,能在一定程度上解决脱氢/氢化动力学缓慢的问题,并且MgS能够提供丰富的成核活性位点。碳基材料的添加,能促进Mg/MgH2相形核,细化...  相似文献   

19.
利用阴极极化曲线、交流阻抗谱,对超音速微粒轰击(USPP)表面纳米化处理(SNC)的IF钢在30%NaOH溶液中的析氢行为进行了研究,同时利用XRD和SEM分析了表面纳米化前后IF钢的晶粒度和表面形貌。试验证明,经SNC处理后,IF钢析氢过电位比基材降低200 mV;SNC+1%平整的IF钢比基材析氢过电位低300 mV以上;经处理后IF钢真实表面积比原IF钢板分别增大18倍和21倍,其表观析氢活化自由能分别由51.7 kJ/mol降低为26.5 kJ/mol和21.7 kJ/mol,仅为原IF钢板的50%。  相似文献   

20.
由于电解水阳极析氧反应(Oxygen Evolution Reaction, OER)过电位较高,增加了电解水制氢的整体能耗。故本实验采用热力学上有利的甲醇氧化反应(Methanol Oxidation Reaction, MOR)替代OER,尝试缓解OER对酸性电解水制氢的能耗制约。通过热解法制备了Pr2O3/RuO2和Gd2O3/RuO2催化剂,不仅能催化甲醇生成增值的甲酸(HCOOH),而且可以使MOR过程与析氢反应耦合,生成高纯的H2。电化学分析测试表明,在含CH3OH(2.5 mol·L-1)的H2SO4(0.5 mol·L-1)电解质溶液中,电流密度达到10 mA·cm-2时,Pr2O3/RuO2和Gd2O...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号