首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新算法。首先,该方法利用一维卷积神经网络自提取能力进行特征提取,同时设计了一个全局均值池化层替换传统卷积神经网络的全连接层,减少参数数量;其次,引入双向门控循环单元学习特征信号中的时间序列关系;最后,通过支持向量机替换传统CNN中的Softmax层进行故障分类,进一步提高诊断的准确率。实验表明,该方法将诊断的准确率提升至99.8%,并且加快了诊断的速度。通过与其他方法的对比,证明了该方法有着更高的准确率,更快的诊断速度,更好的鲁棒性。  相似文献   

2.
结合深度学习理论,将一维卷积神经网络运用于振动信号故障诊断,相较于传统方法,提取特征简单且高效。为进一步优化一维卷积结构,弥补其在信号所有位置的寻找模式,联系周期内的故障特征,提出一种新型DSCNN-GRU网络。该模型融合了深度可分离卷积的轻量快捷,降低了一维卷积结构参数;加入门控机制,可记忆分析故障点的信号特征,联系周期内的信号关系,更好地捕捉信号故障特征,提升对时间序列的敏感性。提出一种跟踪梯度优化Adam算法,解决模型随时间窗振荡问题。通过采集的减速机滚动轴承数据研究表明,该算法平均故障识别率可达94%以上,分类效果明显,泛化能力强。  相似文献   

3.
传统的机械故障诊断方法需要将采集的故障波信号进行信号处理,再结合神经网络进行特征提取与分类,不仅流程复杂、耗费时间,而且识别准确率不高。针对此问题,采用一维卷积神经网络(one dimensional convolutional neural network,简称1D?CNN)对试验获取的某航空发动机的齿轮故障振动数据进行特征提取与分类,建立齿轮故障一维卷积神经网络模型,对航空发动机轴承进行故障诊断。试验与分析结果表明:采用该神经网络模型对齿轮进行分类,其准确率可达80%,相较于采用传统的前馈神经网络63.9%的识别准确率,提高了15.07%;与采用支持向量机(support vector machine ,简称SVM)对故障进行分类识别相比,该方法准确率提高了15.89%。本方法能够直接将波形振动信号作为输入,通过卷积、池化等一系列操作,输出最后的分类结果,简化了传统方法先进行信号处理再通过机器学习诊断的步骤,为航空发动机故障诊断提供一种可行方法。  相似文献   

4.
针对传统轴承故障诊断方法依赖人工进行特征提取时效率低且难以处理大规模数据等问题,将卷积长短时深度神经网络(CLDNN)引入轴承故障诊断并进行改进,提出一种基于注意力机制的卷积门控深度神经网络(Attention-CGDNN)的滚动轴承故障诊断模型,该模型将卷积神经网络、门控循环单元和全连接神经网络有效融合以实现滚动轴承信号特征提取,并加入注意力机制使网络更专注于重要特征,最后通过Softmax分类算法实现滚动轴承故障诊断。采用CWRU和XJTY-SY轴承数据集的验证结果表明,Attention-CGDNN模型具有训练参数少,训练难度小,收敛速度快和识别精度高的特点,特征提取能力更强,故障诊断性能优于传统模型。  相似文献   

5.
王永鼎  金子琦 《机械强度》2021,43(4):793-797
针对滚动轴承故障识别过程中,难以提取细微故障特征的问题,提出一种基于融合卷积神经网络与基于粒子群优化算法的支持向量机相结合的滚动轴承故障诊断方法.该方法将轴承振动信号同时作为一维卷积神经网络和二维卷积神经网络的输入信号,并在汇聚层中将提取到的故障信息融合,最后通过优化后的分类器提高故障识别准确率.为了验证该方法的诊断性能,将与融合卷积神经网络同规格的一维卷积神经网络和二维卷积神经网络进行对比.试验结果表明,该方法不仅可以提高故障识别准确率,还可以在信号受到噪声污染时保持良好的诊断性能.  相似文献   

6.
风电机组滚动轴承的振动信号存在非线性、非平稳的特性,且其特征不易被提取,针对这一问题,提出了一种基于S变换、卷积神经网络、双向门控循环单元的滚动轴承故障诊断方法(即基于S-CBiGRU的诊断方法)。首先,利用S变换对风场采集的振动信号进行了多分辨率时频分析,将一维振动信号转化为包含时间与空间特征信息的二维时频图像;然后,将经S变化所得到的时频图输入到CBiGRU网络模型中,采用CNN卷积池化层提取了振动信号的空间特征;其次,采用BiGRU结构提取了振动信号中的时间序列特征;最后,为了对上述诊断方法的有效性进行验证,采集了风电机组轴承实验数据,并将其输入到该模型中进行诊断实验。实验结果表明:在风电机组轴承故障诊断中,采用S-CBiGRU方法准确率达到93.17%,分类效果优于其他深度学习算法。研究结果表明:S-CBiGRU故障诊断方法具有可行性,可以为风电机组滚动轴承的故障诊断提供一种新途径。  相似文献   

7.
针对行星齿轮箱故障信号成分复杂和时变性强的特点,提出了基于注意力机制的一维卷积神经网络(1D-CNN )行星齿轮箱故障诊断方法.首先,将行星齿轮箱各类故障状态的原始振动信号进行分段处理,作为模型的输入;其次,利用一维卷积神经网络对行星齿轮箱的原始振动信号学习齿轮故障特征,结合注意力机制( AM )对特征序列自适应的赋予不同的权重,增强故障特征信息;最后,利用 Softmax 分类器实现行星齿轮箱的故障诊断.通过故障实验验证以及与其他模型的对比,该故障诊断模型具有较强的学习能力,诊断性能优于其他的深度学习模型,有较好的工程实际意义.  相似文献   

8.
基于一维卷积神经网络的滚动轴承自适应故障诊断算法   总被引:1,自引:0,他引:1  
现有的滚动轴承故障诊断算法依赖于人工特征提取和专家知识,然而滚动轴承复杂多变的工作环境使得传统的智能故障诊断算法缺乏自适应性。针对此问题,提出了基于"端到端"的自适应一维卷积神经网络(ACNN-FD)故障诊断算法。首先,将各类故障状态的原始振动信号进行有重叠分段预处理用于构建训练样本和测试样本;然后,将每个训练样本以某一尺度的"时间步"进行划分作为所建立的一维卷积神经网络模型的输入,利用深度网络结构实现对原始振动信号特征的自适应层级化提取;最后在输出端利用Softmax分类器输出诊断结果。通过轴承数据库实验表明算法能够实现高达99%以上的故障识别准确率,同时在不同负载下良好的泛化性能,具备实际应用的可行性。  相似文献   

9.
针对起重机械中的滚动轴承在高转速、重载荷和强噪声背景下,早期故障特征难以提取及有效识别的问题,提出一种改进卷积神经网络(CNN)的故障诊断方法。该方法首先应用短时傅里叶变换(STFT)将传感器采集到的一维振动信号转换为二维时频图,并将其作为改进卷积神经网络的输入,然后利用卷积神经网络强大的特征提取能力自适应地提取故障特征。最后,通过CNN模型最后一层的Softmax层对提取到的特征进行分类从而实现故障诊断的目的。  相似文献   

10.
为解决旋转机械故障类型多、等级不均衡的故障诊断难题,构建了一种基于ID3决策树与卷积神经网络(ID3-CNN)的故障诊断模型。首先对原始信号进行人工时域特征提取,使用t-SNE降维可视化提取出特征混叠的故障,而后利用卷积运算对特征混叠的故障进行二次特征提取,提高模型的特征表达能力,最后使用ID3决策树和卷积神经网络对不同等级的故障进行分类。在轴承数据集上对模型进行了验证,结果表明,严重故障的诊断准确率达到100%,轻微故障的诊断准确率达到95%。与传统的支持向量机及二维卷积神经网络比较,提高了模型的诊断准确率及特征提取能力。  相似文献   

11.
姚立  孙见君  马晨波 《轴承》2022,(2):61-67
针对卷积神经网络难以处理时间序列数据和循环神经网络难以提取数据深层特征的问题,提出了一种基于深度卷积网络和循环神经网络相结合的滚动轴承故障诊断方法.首先,使用格拉姆角场(GAF)编码将一维轴承振动信号构造为时序图像并划分为训练集、验证集和测试集;然后,将训练集和验证集输入VGG16模型进行特征提取,将提取到的特征输入R...  相似文献   

12.
基于深度学习的电机轴承微小故障智能诊断方法*   总被引:3,自引:0,他引:3  
运用深度学习技术对滚动轴承微小故障发生的位置、类别和严重程度进行精准自动的辨识是当前故障诊断领域研究的热点。传统的故障诊断方法过度依赖于工程师凭经验进行手工特征提取,难以有效提取微小故障特征。提出了一种改进的CNNs-SVM的新方法用于电机轴承的故障快速智能诊断,该方法采用1×1的过渡卷积层与全局均值池化层的组合代替传统CNN的全连接网络层结构,有效减少CNN的训练参数量,在测试阶段采用支持向量机代替Softmax分类器进一步提升诊断准确率。最后将提出的方法用于电机支撑滚珠轴承的故障实验数据并与多种算法对比验证。结果表明,改进CNNs-SVM算法的故障识别准确率高达99.86%,同时在不同负载下具有良好的迁移泛化能力,具备实际工程应用的可行性。其诊断准确率和测试时间明显优于其他智能算法。  相似文献   

13.
李辉  徐伟烝 《轴承》2023,(5):75-82
针对短时傅里叶变换、小波变换等传统信号预处理方法易受噪声影响的问题,提出了一种基于谱相关密度和卷积神经网络的滚动轴承故障诊断方法(SCD-CNN)。首先,利用谱相关密度能有效抑制高斯噪声的优点,将一维振动信号转变为二维谱相关密度图,用于提高卷积神经网络输入信号的信噪比;然后,将谱相关密度图作为卷积神经网络的输入,通过二维卷积神经网络实现轴承故障特征提取和分类;最后,利用凯斯西储大学标准轴承数据集的试验结果表明,相对于STFT-CNN和CWT-CNN模型,SCD-CNN模型具有更高的故障识别准确率(98.97%)。另外,对SCD-CNN模型的诊断结果,不同阶段的特征图以及分类过程进行了可视化分析,探讨了SCD-CNN模型故障识别准确率提高的深层次原因。  相似文献   

14.
分布式电源大量接入配电网,加大了网络的复杂程度,需要采集的数据量变大,对现在的配电网故障诊断技术带来了挑战,以数据驱动方法作为配电网故障定位方法成为了一种新的趋势。为此提出了一种基于一维密集连接卷积网络的配电网故障定位方法。通过三个测量点将零序电流采集出来作为网络的输入信号,然后将输入信号输入到改进卷积神经网络的一维密集连接卷积网络中进行特征提取,提取出故障特诊信息后输入到Softmax分类器中进行故障区段确定,最后通过配电网模型验证所提方法能够针对不同故障类型、不同过渡电阻具有快速准确的故障定位能力,并且和传统的一维卷积神经网络相比,具有更大的优越性。  相似文献   

15.
针对行星齿轮箱振动信号频率成分复杂和时变性强的问题,提出了基于时频融合和注意力机制的深度学习行星齿轮箱故障诊断方法。首先,采用小波包分解将原始振动信号分解到频带和时间两个维度作为输入数据;然后,使用卷积神经网络融合数据的频带特征,使用双向门控循环单元融合时序特征;接着采用注意力结构对不同时间点的特征自适应地进行动态加权融合;最后通过分类器进行识别,实现行星齿轮箱的端对端故障诊断。实验表明,该方法对比现有的深度学习故障诊断模型具有更高准确率,能够对行星齿轮箱多种健康状态进行准确地诊断。  相似文献   

16.
陈维望  李军霞  张伟 《机电工程》2022,39(5):596-603
在对矿山机械装备中使用的轴承进行故障诊断时,易受噪声干扰及多变工况的影响,同时也难以适应不同诊断任务,针对这一系列问题,提出了一种基于分支卷积神经网络(B-CNN)的托辊轴承故障分级诊断方法。首先,根据具体的诊断任务故障的层级结构进行了划分,采用多层标签表示健康状态、故障类型和损伤程度;通过交替卷积和池化层,构建了一维卷积神经网络(1DCNN)特征提取块;然后,将层级结构和特征提取块融合,设计出了一种基于分支一维卷积神经网络(B-1DCNN)的轴承故障分级诊断模型;最后,使用美国凯斯西储大学轴承数据和自建的带式输送机托辊故障模拟实验台数据,对托辊轴承故障进行了模拟实验,对该方法在噪声干扰和多变工况下的诊断性能进行了验证。研究结果表明:该方法成功实现了对托辊轴承故障从粗到精的分级诊断,对噪声干扰和变工况具有较好的鲁棒性,且与支持向量机(SVM)和反向传播神经网络(BPNN)模型相比,该方法的故障诊断性能更好。  相似文献   

17.
往复压缩机振动信号特性复杂,传统特征提取方法难以有效提取故障特征,从而影响故障诊断效果。提出了基于原始振动信号卷积神经网络(RVCNN)的方法,将采集的一维原始振动信号作为输入,充分利用卷积神经网络(CNN)自动提取信号特征的特性,对往复压缩机故障进行特征提取及诊断。使用从试验台获得的压缩机气阀故障数据样本进行测试,结果表明,与传统方法相比,RVCNN方法具有更高的故障识别率和更好的抗噪性能。  相似文献   

18.
尚东方  申浩  王正 《轴承》2023,(11):81-86
传统卷积神经网络模型采用单一类型卷积核,面对复杂工况下的实际数据时存在特征提取不充分,故障识别率低等问题,因此提出了一种基于多种卷积核特征提取自适应融合的滚动轴承故障诊断方法(MCK-CNN)。首先,将轴承一维振动信号经过小波变换转换为二维时频图,将时频图经过一个共同的特征提取网络初步进行特征提取后并行经过一个常规的Convolution和Involution卷积网络;然后,经过2个由不同卷积核构成的网络进行不同方式的特征提取并通过CBAM注意力模块将两类特征自适应地融合;最后,将融合特征输入全连接层并通过Softmax函数输出分类结果。CWRU和实验室轴承数据集的试验结果表明,MCK-CNN模型的训练效率和故障识别率均较高。  相似文献   

19.
针对液压信号复杂且难以诊断的难点,提出一种多尺度一维卷积神经网络与多传感器信息融合的深度神经网络模型(MS1D-CNN-MSIF)对液压泵与蓄能器进行故障诊断。在提出方法中,采用不同大小的卷积核对故障信号进行多尺度特征提取;然后使用多传感器信息融合策略将多个传感器的特征信号进行融合,最后使用Softmax进行分类识别。诊断蓄能器压力状态与液压泵泄漏状态的实验结果表明,与支持向量机、堆栈自编码、深度置信网络比较,提出模型具有更好的故障诊断性能,蓄能器识别精度可达99.50%,液压泵识别精度可达99.73%。  相似文献   

20.
焦瀚晖  胡明辉  王星  冯坤  石保虎 《机电工程》2020,37(9):1063-1068
将卷积神经网络(CNN)应用于振动信号分析时,往往会出现由于一维信号转化为二维特征导致的计算量巨大的问题,针对这一问题,对卷积神经网络输入构造及不同构造方式对神经网络性能的影响进行了研究。基于机泵振动信号分析特点,提出了一种新的将一维振动信号转换为二维的特征快速构造方法;基于特征快速构造方法和卷积神经网络,构建了机泵故障智能识别模型;利用某石化现场轴承故障和不平衡故障数据对故障模型进行了测试,并与其他信号转化方法及故障识别模型进行了对比。研究结果表明:不同故障类型模型均可以快速收敛,故障识别准确率均达95%以上;在故障识别准确率和训练效率方面,该模型较其他模型有着较显著的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号