首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nano-adhesion characteristics between scanning probe microscope (SPM) tips of various radius of curvature and flats of different materials were experimentally studied. Adhesion and friction forces between Si-wafer (1 0 0) and Si3N4 tips were measured under various applied normal loads, and the results were compared to those of diamond-like carbon (DLC), tungsten incorporated diamond-like carbon (W-DLC) and octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) formed on Si-wafer surfaces. Also in order to study the effect of capillary force, tests were performed in various relative humidity. Results showed that the adhesion increased with the tip radius. When the applied normal load increased from 0 to 40 nN, the adhesion did not change, but the friction increased linearly. Results generally showed that surfaces of the more hydrophobic property revealed the lower adhesion. The adhesion forces increased with the relative humidity. The nano-adhesion phenomenon was discussed on the basis of JKR model and capillary force exerted by meniscus.  相似文献   

2.
Friction and Wear Studies of Octadecyltrichlorosilane SAM on Silicon   总被引:4,自引:0,他引:4  
A self-assembled monolayer of octadecyltrichlorosilane (OTS) was prepared on a single-crystal silicon wafer (111) and its tribological properties were examined with a one-way reciprocating tribometer. The worn surfaces and transfer film on the counterface were analyzed by means of scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that, due to the wear of the OTS monolayer and the formation of the transfer film on the counterpart ball, the friction coefficient gradually increases from 0.06 to 0.13 with increasing sliding cycles and then keeps stable at a normal load of 0.5N. The transfer film is characterized by deposition, accumulation, and spalling at extended test duration. Though low friction coefficients of the monolayer in sliding against steel or ceramic counterfaces are recorded, poor load-carrying capacity and antiwear ability are also shown. Moreover, the monolayer itself or the corresponding transfer film on the counterface fails to lubricate even at a normal load of 1.0N. Thus, the self-assembled monolayer of octadecyltrichlorosilane can be a potential boundary lubricant only at very low loads.  相似文献   

3.
Tribological properties of Si/Si contacts were measured on a microscale by using an atomic force/friction force microscope. Friction forces and pull-off forces between a Si tip and a polished surface of a Si(100) wafer were studied as a function of applied normal load and relative humidity of the surrounding air. The results show that pull-off forces and friction coefficients increased and were strongly influenced by capillary forces with increasing humidity. Tribological interactions during 20 passes of overlapping sliding contact at 50% relative humidity and very small loads of 70 nN were confined to the layer of adsorbates and chemical reactions, without measurable solid damage on the Si(100) wafer.  相似文献   

4.
The article peruses the frictional response of an important metal working lubricant additive, sodium oleate. Frictional force microscopy is used to track the response of molecules self-assembled on a steel substrate of 3–4 nm roughness at 0% relative humidity. The friction-normal load characteristic emerges as bell-shaped, where the peak friction and normal load at peak friction are both sensitive to substrate roughness. The frictional response at loads lower than that associated with the peak friction is path reversible while at higher loads the loading and unloading paths are different. We suggest that a new low-friction interface material is created when the normal loads are high.  相似文献   

5.
The friction between two model atomic force microscope tips and two hydrocarbon monolayers has been examined using molecular dynamics simulations. An amorphous hydrocarbon tip and a flat diamond tip were both employed. One monolayer was composed of linear alkane chains and the other was composed of chains that were polymerized in a regular pattern near the tip–monolayer interface. When friction is decomposed into the forces on individual chains pushing and resisting sliding, the monolayer composed of linear alkane chains exhibited strong pushing forces immediately after clearing tip features at the sliding interface. When this monolayer is paired with the amorphous tip, the strong pushing forces resulted in low friction compared to a monolayer composed of polymerized chains. When the diamond tip is employed, commensurate meshing with the chains of the linear-alkane monolayer resulted in chains resisting tip motion for longer durations. The consequence of this is higher friction compared to the polymerized monolayer, despite the linear-alkane monolayer’s more symmetric chain response at resisting-to-pushing transitions.  相似文献   

6.
Frictional forces are usually measured by detecting spring displacement. To obtain high-resolution measurements of frictional force distributions, a sharp tip and a light load are required. In measuring frictional force on relatively rough surfaces, using very sharp tips (submicron radii), significant stick-slip motions are observed, and continuously varying dynamic frictional forces can not be measured. To measure continuous friction distributions between sharp tips and surfaces with light loads, a new frictional force microscope (FFM) is developed. This FFM has an electromagnet to maintain the tip suspension spring in a non-deflected position. The frictional force is then measured from the magnet current. Using this FFM, continuous friction distributions between 0·1 μm radius diamond tips and magnetic disk surfaces with light loads (less than 10 μN) are obtained.  相似文献   

7.
《Wear》2007,262(1-2):130-137
Friction characteristics of self-assembled monolayers (SAMs) coated on Si-wafer (1 0 0) by chemical vapor deposition technique were studied experimentally at nano and micro-scales. Four self-assembled monolayers, such as dimethyldichlorosilane (DMDC), diphenyldichlorosilane (DPDC), perfluorooctyltrichlorosilane (PFOTS) and perfluorodecanoicacid (PFDA) coated on Si-wafer (1 0 0) were used as test materials. Nano-scale friction was measured using atomic force microscopy (AFM) in the range of 0–40 nN normal loads, in LFM (lateral force microscopy) mode, using a contact mode type Si3N4 tip. Results showed that the friction of SAMs at this scale was influenced by their physical/chemical properties, while that of Si-wafer by its inherent adhesion. Further, micro-scale friction tests were also performed with a ball-on-flat type micro-tribotester under reciprocating motion. Friction was measured in the range of 1500–4800 μN applied normal loads using glass balls of varying radii, viz., 0.25, 0.5 and 1 mm. It was observed that the performance of SAMs was more superior to Si-wafer even at micro-scale, except for PFDA. Evidences obtained using scanning electron microscope showed that Si-wafer and PFDA exhibited wear at this scale. Wear in the case of Si-wafer was due to solid–solid adhesion and that in the case of PFDA due to the influence of humidity (moisture). The micro-scale friction in both these materials was severely influenced by their wear.  相似文献   

8.
In the present study, three kinds of self-assembled dual-layer films with various tail groups and chain length were prepared by adsorption of different carboxylic acids (stearic acid, STA; propionic acid, PPA; and phenylacetic acid, PAA) to the top of 3-aminopropyltriethoxysilane (APS) film on silicon surface. Using an atomic force microscopy, the films were found to reveal smaller adhesion and friction forces in vacuum than in atmosphere. Due to the effect of the adsorbed water layer on the samples, the more hydrophilic film exhibited the larger difference between the friction forces in vacuum and in atmosphere. For the dual-layer films either in atmosphere or in vacuum, the densely packed long chains can lead to lower friction than the poor-packed short chains, and the tail phenyl groups may induce higher friction than the methyl groups. In the initial stage of nanowear process by a diamond tip, a series of hillocks were observed on silicon surface along the scratching line. It was found that all the films can effectively enhance the antiwear ability of silicon surface and the self-assembled dual-layer film terminated by long chains (STA/APS) or –C6H5 groups (PAA/APS) performed much better than that terminated by short chains. Finally, the microwear abilities of the films were examined on a universal micro-tribometer. With the increase in normal load from 50 to 200 mN, the wear life varied for different films and good antiwear performances were also assigned to STA/APS and PAA/APS. This work can be indicative in the application of self-assembled films in the micro/nanoelectromechanical systems.  相似文献   

9.
This report describes an observation of alternating transitions between linear (Amontons) and non-linear friction-load behavior during Lateral Force Microscope experiments using a silicon tip sliding on a quartz surface. Initially, a transition from linear to non-linear behavior was attributed to nanoscale ‘running-in’ of the tip to form a single contact junction at the interface. Once this had occurred, a non-linear relationship between friction and applied load was observed during a number of loading and unloading cycles. For higher compressive loads, a further transition to a more linear friction-load behavior was attributed to nanoscale wear in the contact zone. Notably, when applied load was reduced below this ‘high-load’ transition point, the same non-linear friction-load behavior was again observed, but with a larger (friction per load) magnitude than seen previously. This cycle was repeated five times in these experiments, and each time, switching between non-linear and linear friction-load behavior occurred, along with a progressive increase in friction (per load) each time load was reduced below the transition point. The progressive increase in friction is attributed to an increased area of contact, caused by nanoscale wear at higher applied loads. An increase in tip size was confirmed by tip profiling before and after experiment. By progressively wearing the asperity at higher loads, the (interfacial or true) contact area, A, between the surfaces could be progressively increased, and as a result, a progressive increase in interfacial sliding friction, F f , was obtained at lower loads (according to F f = τA).  相似文献   

10.
Using friction force microscopy (FFM) under controlled environments, we have systematically investigated the humidity effect on the frictional properties of two important classes of self-assembled monolayers (SAMs), i.e., N-octadecyltrimethoxysilane (OTE, CH3(CH2)17Si(OCH3)3) on SiO2(OTE/SiO2), and N-alkanethiols on Au(111), together with their respective substrates. Experimental results show that both OTE and alkylthiol SAMs can decrease the friction force between a Si3N4 atomic force microscope (AFM) tip and substrates. The nearly humidity-independent friction of the two kinds of SAMs indicates that these SAMs are ideal lubricants in applications of micro-electro-mechanical systems (MEMS) under different environments. The humidity dependence—as the humidity increases, the friction first increases and then decreases—of the two substrates, SiO2 and Au(111), can be explained by the adsorption of water. The decrease in the friction at high humidity is attributed to the low viscosity in the multilayers of water, while the increase in the friction at low humidity can be explained by the high viscosity between the water monolayer and the surfaces (AFM tip and sample), possibly due to the confinement effects. The effect of modification of the AFM tip with alkanethiol molecules on the humidity dependence of Au(111) friction has also been investigated.  相似文献   

11.
This paper describes a computational method to calculate the friction force between two rough surfaces. In the model used, friction results from forces developed during elastic deformation and shear resistance of adhesive junctions at the contact areas. Contacts occur between asperities and have arbitrary orientations with respect to the surfaces. The size and slope of each contact area depend on external loads, mechanical properties and topographies of surfaces. Contact force distribution is computed by iterating the relationship between contact parameters, external loads, and surface topographies until the sum of normal components of contact forces equals the normal load. The corresponding sum of tangential components of contact forces constitutes the friction force. To calculate elastic deformation in three dimensions, we use the method of influence coefficients and its adaptation to shear forces to account for sliding friction. Analysis presented in Appendix A gives approximate limits within which influence coefficients developed for flat elastic half-space can apply to rough surfaces. Use of the method of residual correction and a successive grid refinement helped rectify the periodicity error introduced by the FFT technique that was used to solve for asperity pressures. The proposed method, when applied to the classical problem of a sphere on a half-space as a benchmark, showed good agreement with previous results. Calculations show how friction changes with surface roughness and also demonstrate the method's efficiency.  相似文献   

12.
Friction Study of a Ni Nanodot-patterned Surface   总被引:3,自引:0,他引:3  
Nanoscale frictional behavior of a Ni nanodot-patterned surface (NDPS) was studied using a TriboIndenter by employing a diamond tip with a 1 μm nominal radius of curvature. The Ni NDPS was fabricated by thermal evaporation of Ni through a porous anodized aluminum oxide (AAO) template onto a Si substrate. Surface morphology and the deformation of the NDPS were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), before and after friction/scratch testing. SEM images after scratching clearly showed that, similar to what was assumed at the macroscale, the frictional force is proportional to the real area of contact at the nanoscale. It was found that adhesion played a major role in the frictional performance, when the normal load was less than 20 μN and plastic deformation was the dominant contributor to the frictional force, when the normal load was between 60 μN and 125 μN. Surprisingly, a continuum contact mechanics model was found to be applicable to the nanoscale contact between the tip and the inhomogeneous Ni NDPS at low loads. The coefficient of friction (COF) was also found to depend on the size of the tip and was four times the COF between a 100 μm tip and the Ni NDPS. Finally, the critical shear strength of the Ni nanodots/Si substrate interface was estimated to be about 1.24 GPa.  相似文献   

13.
Friction, and in particular stick-slip friction, occurs on every length scale, from the movement of atomic force microscope tips at the nanoscale to the movement of tectonic plates of the Earth’s crust. Even with this ubiquity, there still appears to be outstanding fundamental questions, especially on the way that frictional motion varies generally with the mechanical parameters of a system. In this study, the frictional dynamics of the hook-and-loop system of Velcro® in shear is explored by varying the typical parameters of driving velocity, applied load, and apparent contact area. It is demonstrated that in Velcro® both the maximum static frictional force and the average kinetic frictional force vary linearly with apparent contact area (hook number), and moreover, in the kinetic regime, stick-slip dynamics are evident. Surprisingly, the average kinetic friction force is independent of velocity over nearly two-and-a-half orders of magnitude (~2 × 10?4 to ~6 × 10?2 m/s). The frictional force varies as a power law on the applied load with an exponent of 0.28 and 0.24 for the maximum static and kinetic frictional forces, respectively. Furthermore, the evolution of stick-slip friction to more smooth sliding, as controlled by contact area, is demonstrated by both a decrease in the spread of the kinetic friction and the spread of the fluctuations of the average kinetic friction when normalized to the average kinetic friction; these decreases follow power-law behaviors with respect to the increasing contact area with exponents of approximately ?0.3 and ?0.8, respectively. Lastly, we note that the coefficients of friction μ s and μ k are not constant with applied load but rather decrease monotonically with power-law behavior with an exponent of nearly ?0.8. Phenomenologically, this system exhibits interesting physics whereby in some instances it follows classical Amontons–Coulomb (AC) behavior and in others lies in stark contrast and hopefully will assist in the understanding of the friction behavior in dry surfaces.  相似文献   

14.
Patterned self-assembled monolayers (SAMs) were formed on gold films and observed by friction force microscopy (FFM) and adhesive force mapping with pulsed-force mode atomic force microscopy (PFM-AFM). The substrate gold films were prepared by sputtering gold on flat surfaces of osmium-coated cover glass with surface roughness, Ra, of 0.3 nm. The patterned samples with the CH3 and COOH terminated regions were prepared using the Langmuir-Blodgett (LB) method, partial removal of the LB film by ultrasonication, and SAM formation. The CH3 and COOH terminated regions of the patterned SAMs in air and in water were observed by mapping friction and adhesive forces with FFM and PFM-AFM, respectively, using gold-coated AFM tips chemically modified with a thiol compound terminating in CH3 or COOH. The adhesive forces measured in air increased in the order of CH3/CH3, CH3/COOH (or COOH/CH3) and COOH/COOH, while those in water increased in reverse order. The enormous high adhesive force observed in water for CH3/CH3 was attributed to hydrophobic interaction between the CH3 tip and the CH3 terminated sample surface. With CH3 tip, the lower friction force was observed, however, in water on the CH3 terminated region than on the COOH terminated region. This experimental finding raises a question as to what is the effective normal load in friction measurements in water.  相似文献   

15.
Fourier analysis of oscillating forces at a laterally modulated tip provides new insight into static-to-kinetic friction transitions on ultrathin polyvinyl alcohol (PVA) films. In addition to contrast in sliding friction, layers of autophobically dewetted PVA films exhibit remarkable contrast in the transition from static to kinetic friction as derived from spatially resolved Fourier analysis. These differences relate to strong adsorption of first layer to mica substrate and concomitant conformational arrest, as compared to bulk-like behavior in the second layer. The third Fourier harmonic is found to be a sensitive gauge to variable degrees of sliding as a function of both lateral drive amplitude (0.25–25 nm) and normal load (tensile to compressive). For a 2.5-nm drive on PVA, it is discovered that a largely static contact at compressive loads becomes a largely sliding contact at tensile loads. This finding has implications for the analysis of shear modulation force microscopy of polymers in the context of contact mechanics models, and for studies under variable sample compliance as a function of temperature or plasticizer absorption.  相似文献   

16.
The pre-sliding and static friction force behaviour at asperity level between a smooth ball and a smooth flat surface at different normal loads, as well as friction behaviour during full slip has been studied. The normal load dependence of the friction force and the preliminary displacement is discussed when the mean contact pressure is kept under 100 MPa. The theoretical model to calculate the shear stress and the preliminary displacement in the contact is discussed and the experimental data were used to verify the model. The results show that for low applied normal loads the adhesion force has an influence on the friction force measurements. Furthermore, the results for the friction force and preliminary displacement show good agreement with the theoretical trends. The experiments along with the model can be used to analyse the tangential traction in the contact and the behaviour of the stick–slip area. The measurement results along with the model were used to calculate the maximum shear stress at the point of sliding for different applied normal loads. It is also shown that at low applied normal loads the shear stress is not constant as compared to relatively high applied normal loads due to the presence of adhesion force.  相似文献   

17.
This paper examines friction as a function of the sliding velocity and applied normal load from air to UHV in a scanning force microscope (SFM) experiment in which a sharp silicon tip slides against a flat Si(100) sample. Under ambient conditions, both surfaces are covered by a native oxide, which is hydrophilic. During pump-down in the vacuum chamber housing the SFM, the behavior of friction as a function of the applied normal load and the sliding velocity undergoes a change. By analyzing these changes it is possible to identify three distinct friction regimes with corresponding contact properties: (a) friction dominated by the additional normal forces induced by capillarity due to the presence of thick water films, (b) higher drag force from ordering effects present in thin water layers and (c) low friction due to direct solid–solid contact for the sample with the counterbody. Depending on environmental conditions and the applied normal load, all three mechanisms may be present at one time. Their individual contributions can be identified by investigating the dependence of friction on the applied normal load as well as on the sliding velocity in different pressure regimes, thus providing information about nanoscale friction mechanisms.  相似文献   

18.
This paper investigates the influence of the applied load and sliding velocity on the microfrictional properties of native oxide-covered Si(100) and Si(100) coated with octadecyltrichlorosilane (OTS) and perfluorodecyltrichlorosilane (FDTS) self-assembled monolayers (SAMs) using a precision microtribometer. Microfriction was investigated as a function of the applied load and sliding velocity. As has been confirmed in earlier studies, in the microtribological regime, OTS and FDTS significantly reduce the friction force in comparison to the bare native oxide-covered (hydrophilic) silicon surface. The friction versus applied load curve of the substrate material as well as the SAMs-covered surfaces can be described by a model based on contact mechanics. For the native oxide surface, microfriction is reduced with increasing sliding speed. The friction force of the OTS- and FDTS-covered surfaces increases with load and is proportional to the natural logarithm of sliding speed. The increase with sliding velocity gets larger for higher normal loads. It can be shown that this increase is proportional to the contact area of the counter sample with the SAMs.  相似文献   

19.
The occurrence of multiple jumps in 2D atomic-scale friction measurements is used to quantify the viscous damping accompanying the stick–slip motion of a sharp tip in contact with a NaCl(001) surface. Multiple slips are observed without apparent wear for normal forces between 13 and 91 nN. For scans parallel to [100] directions, the tip jumps between minima of the substrate corrugation potential in a zigzag fashion. An algorithm is applied to determine histograms of lateral force jumps which characterize multiple slips. The same algorithm is used to classify multiple slips occurring in calculated lateral force maps. Comparisons between simulations and experiments indicate that the nanometer-sized contact is underdamped at intermediate loads (13–26 nN) and becomes slightly overdamped at higher loads. The proposed procedure is a novel way to estimate the lateral contact damping which plays an important role in the interpretation of measurements of the velocity and temperature dependence of friction, of slip duration, and of the reduction of friction by applied perpendicular or parallel oscillations.  相似文献   

20.
《Wear》2006,260(7-8):751-765
The effects of normal load and the resulting scratch depth on scratch force profile, scratch hardness and the mechanisms of deformation and material removal for a number of industrially important polymers are studied. Upon scratching by a 30° angled conical tip, the mean tangential or scratch force is found to be linearly related to the normal load at lower speed (0.2 mm s−1); however, at higher scratching speed (2.0 mm s−1), there is a decrease in the slope of the scratch force versus normal load curve for all polymers. The phenomenon of stick-slip is severe at higher normal loads and scratch depths for the polymers that show ductile nature. The scratch hardness for softer polymers tends to decrease with normal load, whereas for harder polymers, scratch hardness increases for intermediate loads and tends to decrease at very high loads. The deformation mechanism, to a large extent, is insensitive to the imposed normal load or the depth of scratching; however, material removal and debris formation process depends upon the scratch depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号