首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文摘辑要     
正含WC镍基药芯焊丝MIG堆焊层的组织与性能用MIG堆焊的方法,在Q235上制备WC颗粒增强镍基耐磨堆焊层,利用OM、SEM、XRD等方法对堆焊合金的显微组织进行了观察分析,对堆焊层的硬度和耐磨性进行了测试分析。结果表明:堆焊层的基体组织为Ni基固溶体,其上分布着Ni 3B、Ni3 Si等硬质相,这些硬质相与未熔WC颗粒构成了耐磨相,起到减摩耐磨的作用,镍基基体起到支撑作用,使得堆焊层具有良好的耐磨性。WC含量一定时,随着热输入的增大,WC颗粒的溶解使得堆焊层的硬度  相似文献   

2.
用MIG堆焊的方法,在Q235上制备WC颗粒增强镍基耐磨堆焊层,利用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)等方法对堆焊合金的显微组织进行了观察分析,对堆焊层的硬度和耐磨性进行了测试分析。结果表明:堆焊层的基体组织为Ni基固溶体,其上分布着Ni3B、Ni3Si等硬质相,这些硬质相与未熔WC颗粒构成了耐磨相,起到减磨耐磨的作用,镍基基体起到支撑作用,使得堆焊层具有良好的耐磨性。WC含量一定时,随着热输入的增大,WC颗粒的溶解使得堆焊层的硬度从45HRC降低至35.6HRC;随着WC含量的增加,堆焊层中WC硬质相的体积分数增多,使其抗磨粒磨损性能较Ni-B-Si基体从7.83倍提高至8.7倍。  相似文献   

3.
镍基WC等离子弧熔敷层的组织和高温磨损性能   总被引:3,自引:2,他引:1       下载免费PDF全文
为在15CrMo钢表面采用等离子堆焊含60%WC的镍基合金粉末,对堆焊层的显微组织、硬度和高温耐磨性能进行了试验分析.结果表明,堆焊层焊道成形良好,堆焊层组织致密.堆焊层横截面上WC颗粒分布均匀,WC颗粒的质量分数可达60%以上,堆焊后WC颗粒硬度值基本上仍保持了原有的高硬度,颗粒表面重熔量小.堆焊层具有较高的硬度;原始WC颗粒构成的硬质骨架,加上次生WC的弥散强化作用,使堆焊层具有良好的耐磨料磨损性能,其600℃高温耐磨料磨损性能为45正火钢的5倍以上.  相似文献   

4.
目的 研究不同预热温度(200、400 ℃)条件下硬质颗粒增强镍基合金堆焊层的微观组织结构演化机理,以及对其力学性能、磨损性能的影响规律。方法 采用等离子弧焊接技术在42CrMo钢基体表面堆焊硬质WC颗粒增强镍基强化层,利用X射线衍射(XRD)、扫描电子显微镜(SEM)、硬度计和摩擦磨损试验机,分析不同预热温度堆焊层的物相组成、微观组织形貌、力学性能和磨损性能,建立堆焊层制备工艺–微观组织结构–力学性能–磨损性能之间的强映射关系。结果 堆焊层主要由γ-Ni/Fe、WC、W2C、M7C3、M23C6、Ni2W4C、Cr3C2等物相组成,在预热温度200 ℃下堆焊层二次碳化物析出较少,发生了严重的WC颗粒沉降现象;在预热温度400 ℃下,堆焊层析出了大量的二次碳化物,WC颗粒沉降减弱,组织均匀性提高。在400 ℃下预热,相较于200 ℃下预热,堆焊层的磨损质量减少了51.85%,磨损率减少了51.89%。结论 高预热温度和长保温时间可促进WC颗粒界面反应,驱动大面积二次碳化物的析出,有效缓解WC颗粒沉降,改善凝固组织中WC颗粒的分布均匀性,从而显著提高堆焊层的硬度和耐磨性。  相似文献   

5.
焊接工艺对药芯焊丝堆焊层中WC颗粒溶解行为的影响   总被引:1,自引:1,他引:0  
采用熔化极气体保护焊(MIG)、钨极氩弧焊(TIG)、氧乙炔火焰堆焊方法堆焊研制的WC耐磨堆焊药芯焊丝,研究了焊接工艺对堆焊层中WC颗粒溶解行为的影响.结果表明,堆焊方法的选择和电流大小对堆焊层中WC颗粒溶解行为有着重要影响.其中采用TIG连续焊和小电流MIG时,WC颗粒的溶解程度较轻.  相似文献   

6.
等离子弧堆焊镍基复合粉末涂层材料   总被引:7,自引:0,他引:7  
采用等离子弧堆焊技术,在Q235钢表面堆焊镍基复台粉末,该复合粉末经三水平三因子正交设计及正交多项式同归分析,确定在镍基基础粉末中添加的强化元素最佳配比为Cr 10%、Mn 4%、W7%。利用金相显微镜、X射线衍射仪(XRD)对堆焊层的相及组织进行了研究,通过硬度试验和磨损试验测试了堆焊层表面及横截面的硬度和表面耐磨性能,结果表明,复合粉末堆焊层显微组织主要为γ-(Ni,Fe)、γ-M、WC、W2C、Mn31Si12、Cr23C6、Cr7C3、Cr、NiB、Ni2B等,其硬度及耐磨性较基体有显著提高。  相似文献   

7.
等离子堆焊合金层组织及腐蚀磨损性能   总被引:10,自引:0,他引:10       下载免费PDF全文
在 16Mn钢表面等离子堆焊自熔性铁基合金层 (Fe5 5 )、镍基合金层 (Ni6 0 )以及镍基WC合金 (NWC2 5 ) ,并对三种堆焊层进行了显微组织、X射线衍射分析、硬度及在三种不同腐蚀介质下的磨损试验。结果表明 ,合金堆焊层的显微组织均为γ固溶体基体上分布着多种复杂的化合物相 ,如Fe2 3 (C ,B) 6,(Cr ,Fe) 7C3 ,Cr7C3 ,NiB等。NWC2 5堆焊层具有最高的硬度和耐磨性 ;合金堆焊层在稀H2 SO4和稀NaOH溶液介质中的耐磨性与在中性水中相比都有所降低 ,在酸性介质中降低更加明显  相似文献   

8.
采用等离子堆焊技术在316L不锈钢表面原位合成WxC增强镍基复合材料涂层,对涂层显微组织、相组成、硬质增强相的分布、显微硬度以及空蚀性能进行了分析.结果表明,Colmonoy 88合金等离子堆焊成形性良好,组织致密;堆焊层组织主要由γ-Ni固溶体,原位合成多角形、颗粒状WxC及少量的Cr7C3,Fe3W3C,CrB2相组成.堆焊过程中,熔池温度低于1 655 K时,原位生成WC和W2C,温度高于1 655 K时,原位生成的WC发生了分解.镍基合金堆焊层平均硬度可达1 619 HV,为基材的8倍以上,在3.5% NaCl溶液中镍基复合材料抗空蚀性能为316L不锈钢基材的5倍.  相似文献   

9.
热锻模长期在高温环境中承受较大机械载荷以及冷热疲劳等作用,容易发生破坏失效。通过等离子粉末堆焊在模具表面上堆焊制备出高性能表面覆层,大幅度提高了模具性能。通过对复合材料的制备方案的分析,选择镍基自熔性合金粉末,借助等离子粉末堆焊工艺制备出碳化铬增强镍基堆焊覆层。以H13钢为例,对比研究了镍基合金堆焊层以及镍基碳化铬堆焊层的组织成分、相结构及显微硬度。堆焊层的微观组织表明,堆焊层与基体冶金结合良好,堆焊层熔接线附近元素呈梯度分布。镍基堆焊层以及镍基碳化铬堆焊层组织均以γ-Ni固溶体为主,在晶界处分布有碳化物和硼化物。由于碳化铬颗粒的强化作用,镍基碳化铬堆焊层中的固溶体晶粒更加细小,同时碳化物数量更多,弥散分布在固溶体的晶界处。  相似文献   

10.
陈择果 《焊接技术》2003,32(4):23-24
介绍一种新型的WC堆焊设备和工艺,即在自动MIG堆焊层中加入WC颗粒,以解决大部分WC下沉到底部、分解等问题。该设备结构简单,操作方便,工艺简单可行,可获得理想的加有及覆盖有WC颗粒的耐磨堆焊层。  相似文献   

11.
采用脉冲MIG焊技术,用UTPADUR600耐磨实芯焊丝,在45CrNiMoVA钢基体上堆焊制备了堆焊层;采用扫描电子显微镜对其组织形貌进行了观察分析,并对堆焊层的内聚强度和显微硬度进行了测试。试验结果表明:堆焊层的组织主要为奥氏体和二次渗碳体;焊缝的组织为针状马氏体组织;堆焊层的平均结合强度为695.3MPa;堆焊层的平均显微硬度为HRC58.4,较基体有较大提高,有利于改善材料的耐磨损性能。  相似文献   

12.
在镍基高温合金等离子弧堆焊过程中引人横向交流磁场,利用磁场的作用来提高堆焊层的性能.在堆焊过程中,调节磁场参数和焊接工艺进行实验,测试了不同参数下的堆焊层硬度、磨损性能以及分析了其显微组织.结果表明,适当磁场参数产生的电磁搅拌可以细化堆焊层的组织,而且还能控制堆焊层中陶瓷复合材料的数量、形态及分布情况,从而改善了堆焊层金属的硬度和耐磨性.此外,电磁搅拌还能减小堆焊层化学成分不均匀性,提高堆焊层的塑性和韧性,降低结晶裂纹和气孔的敏感性,从而提高了堆焊层的综合力学性能.  相似文献   

13.
采用等离子弧粉末堆焊技术在Q235钢表面分别堆焊高铬铸铁和WC增强型高铬铸铁,通过对各堆焊层的显微组织、化学成分、显微硬度、耐磨性和耐蚀性进行对比分析,揭示WC颗粒对高铬铸铁堆焊层的影响。结果表明,高铬铸铁堆焊层显微组织由初生(Fe,Cr)7C3和共晶组织组成,WC增强型高铬铸铁堆焊层由初生碳化物、WC颗粒和共晶组织组成。与高铬铸铁相比,WC增强型高铬铸铁由于WC的加入,初生碳化物面积分数非常高,共晶组织数量相应减少;WC增强型高铬铸铁的硬度,耐电解腐蚀性和耐热腐蚀性均优于高铬铸铁。两种堆焊层熔合线处的硬度陡降,结合线扫描结果说明,WC的加入不影响WC增强型高铬铸铁堆焊层与基体界面处的冶金结合和堆焊质量。  相似文献   

14.
以镍基合金粉Ni35、铬粉和石墨为堆焊材料,用光束反应合成的方法制备了碳化物增强的镍基合金堆焊层,研究了堆焊材料组成对堆焊层显微组织及宏观硬度的影响规律.结果表明,在镍基合金粉中加入铬粉和石墨,堆焊层中析出了一次碳化物,可显著提高堆焊层的宏观硬度;随铬粉和石墨加入量的增加,堆焊层中一次碳化物的析出量随之增加,堆焊层的宏观硬度相应提高,最高可达62 HRC,是镍基合金粉光束堆焊层的2.8倍;但加入过多的铬粉和石墨将恶化堆焊层的成形.  相似文献   

15.
采用钨极氩弧焊焊接方法在核电用16MND5低合金钢表面进行690镍基焊丝堆焊,分别堆焊1层和利用回火焊道方法堆焊3层,研究回火焊道对堆焊层热影响区的硬度、组织和冲击韧性的影响。结果表明:回火焊道产生的回火效应可有效降低合金钢镍基堆焊层热影响区的硬度至可接受硬度范围320HV10以下,堆焊层热影响区的冲击韧性提高27%以上,均值达到163J/cm2,热影响区板条状组织得到有效回复,获得满足RCC-M标准要求的低合金钢焊接热影响区硬度和冲击韧性指标。研究表明利用回火焊道技术可实现低合金钢镍基堆焊免除高温回火热处理。  相似文献   

16.
采用手工氩弧堆焊在Q235钢板上堆焊镍基自熔合金粉末,研究堆焊工艺及堆焊层性能。采用不同工艺参数压制不同厚度的合金粉块进行堆焊工艺性能试验,以找出获得良好成形的堆焊工艺参数和堆焊操作方法;在此基础上进行了堆焊层性能试验,研究了工艺参数对堆焊层性能的影响规律。对堆焊层金属和热影响区金属的显微组织进行了分析,测试了堆焊层硬度,进行了耐磨性试验。结果表明:采用镍基自熔合金压块法手工氩弧堆焊工艺简单,堆焊层成形良好,堆焊层硬度和耐磨性较高;堆焊金属的显微组织和力学性能与添加粉块厚度和堆焊电流参数有关,综合各方面考虑,在堆焊电流为180 A,粉块厚度为3 mm时,堆焊层性能最好。  相似文献   

17.
采用药芯焊丝埋弧焊方法原位制备了WC颗粒增强铁基耐磨堆焊合金层,借助光学显微镜、扫描电镜、显微硬度计、宏观硬度计以及磨粒磨损试验机等实验仪器,对比研究了不同焊接层数对堆焊合金层的显微组织及耐磨性的影响。结果表明,随着焊接层数的增加,堆焊层的硬度与耐磨性都呈先增加后下降的变化规律。当在基体上堆焊三层时,硬质相WC均匀分布在堆焊层中,其耐磨性达到最佳,是Q235钢的30倍左右。  相似文献   

18.
磁场作用下镍基等离子弧堆焊层的组织及耐磨性能   总被引:2,自引:0,他引:2       下载免费PDF全文
采用等离子弧堆焊设备将镍基合金粉末堆焊到低碳钢表面的过程中施加直流横向磁场,此后对堆焊层进行硬度、磨损和金相试验以及EDS,XRD分析,并系统地研究直流横向磁场对镍基粉末等离子弧堆焊层组织及耐磨性能、硬质相形态及数量的影响规律,对直流横向磁场的作用机理进行了初步的分析和讨论.结果表明,堆焊电流和磁场电流相匹配,即堆焊电流为140 A和磁场电流为2 A时,堆焊层才能获得最佳的性能,此时堆焊层的硬度为66.3 HRC,磨损量为0.0767 g,并且堆焊层组织中硬质相数量最多且分布均匀,从而增强了堆焊层金属的综合力学性能.  相似文献   

19.
金属基陶瓷复合等离子弧堆焊层组织与耐磨性能   总被引:1,自引:0,他引:1       下载免费PDF全文
等离子弧堆焊镍基钴基合金粉末时外加纵向磁场,对两种合金陶瓷复合堆 焊层进行硬度和磨损试验及显微组织分析.结果表明,施加磁场时的堆焊层性能比无 磁场作用的堆焊层性能高.钴基合金的最佳焊接电流和磁场电流分别为160 A和3 A. 此时堆焊层组织晶粒细化效果最明显;而镍基合金为140 A和1 A,此时堆焊层Cr7G3截 面的六角形陶瓷硬质相数量最多且均匀分布,说明Cr7G3硬质相的轴向平行方向一致, 因而硬度和耐磨性最好.随着磁场电流的继续增大,由于电磁阻尼占主导地位,这两种 合金的性能均下降.  相似文献   

20.
采用焊条电弧焊堆焊技术,在Q235钢表面堆焊铁基、铁基和镍基复合粉末.研究添加自熔性合金粉末后堆焊层的性能状况.利用金相显微镜对堆焊层的金相组织进行了研究,通过硬度和磨损试验测试了堆焊层表面的硬度和耐磨性.结果表明,添加铁基自熔性合金或铁镍混合自熔性合金粉末均提高了堆焊层的硬度,并且随着添加量的增加,硬度和耐磨性也有相应的提高,且铁基和镍基复合自熔性粉末比铁基自熔性合金粉末强化效果好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号