共查询到17条相似文献,搜索用时 81 毫秒
1.
熔融碳酸盐燃料电池电解质研究--NiO的溶解度和O2的还原行为 总被引:1,自引:0,他引:1
熔融碳酸盐燃料电池 (MCFC)具有发电效率高、环境友好以及能使用各种燃料等优点 ,但是 ,阴极的NiO溶解在碳酸盐中 ,并迁移到阳极被H2 还原成金属Ni ,造成电池短路 ,影响了使用寿命。为解决这一技术难点 ,延长MCFC的使用寿命 ,经优化计算得到了三元碱金属碳酸盐 (0 .474Li 0 .3 2 6Na 0 .2K )CO3 ,提出了用ICP法测定NiO在该碳酸盐中的溶解度 ,以及不同的气体组成和压力对NiO溶解度的影响 ;同时用电化学测试的方法对O2 在该电极体系的还原行为进行了研究。实验表明 ,NiO在该组成的碳酸盐中溶解度较小 ,而O2 的溶解度较大 ,这就减少了由于氧的扩散阻力造成的阴极极化 ,有利于加快氧的还原反应 ,因此该三元碱金属碳酸盐可作为熔融碳酸盐燃料电池适宜的电解质。 相似文献
2.
3.
该文探讨一种环保的、可连续生产的适合熔融碳酸盐燃料电池(molten carbonate fuel cell,MCFC)使用要求的烧结电极制备方法,以泡沫镍和冲孔镀镍钢带为支撑体,聚乙烯醇与羧甲基纤维素钠的混合溶液作为黏结剂,T255羰基镍粉为导电活性材料,运用拉浆法在不同的烧结温度下制备MCFC电极。在此基础上,采用煤油浸入法测量了制备电极的孔隙率,利用扫描电镜分析电极的微观形貌,通过热重分析仪测试镍浆的失重和热流变化,并对组装后MCFC中电极的电化学性能进行测试。测试结果表明,以镀镍钢带为支撑体的电极较泡沫镍电极具有更好的强度和电化学性能,在一定的烧结条件下,采用拉浆工艺能够制备满足MCFC要求的电极。 相似文献
4.
5.
6.
熔融碳酸盐燃料电池目前是高温燃料电池研究领域的一个难点,其严格的热启动过程和运行状态对电池性能和寿命的影响至关重要。针对这一问题,建立了基于机理的熔融碳酸盐燃料电池电气模型,详细给出了采用电化学方程的熔融碳酸盐燃料电池电气特性的模型结构、算法、训练、仿真和试验。实验结果证明其快速准确,为熔融碳酸盐燃料电池的系统控制提供了一个实际工程应用模型。 相似文献
7.
8.
9.
10.
介绍了分布式发电技术及燃料电池的特点和研究现状,以及熔融碳酸盐燃料电池(MCFC)作为分布式电站的工作原理和结构。分析了当前国内外最新MCFC发电技术的研究现状,指出了我国MCFC发电技术开发有待解决的主要课题,如关键技术的国产化、发电成本的降低等。 相似文献
11.
12.
13.
熔融碳酸盐燃料电池阴极的研究进展 总被引:3,自引:1,他引:3
综述了熔融碳酸盐燃料电池 (MCFC)多孔阴极结构及其新材料的研究进展 ,介绍了多种能够有效改善阴极稳定性、延长MCFC寿命的新技术。以Li Na碳酸盐电解质代替传统的Li K体系或用碱土元素对NiO阴极进行改性 ,能够显著降低镍在电解质中的溶解性。所开发的LiCoO2 和LiFeO2 LiCoO2 NiO复合物等新型阴极材料具有与NiO相当的电化学活性而较低的溶解性。作为一种新型结构技术 ,在阴极和电解质隔膜之间或在电解质隔膜中 ,设置一层金属膜 ,能够有效阻断阴极溶解组分向阳极的扩散 ,避免电池内部短路危险 ,延长电池寿命 相似文献
14.
采用数学模型推算了熔融碳酸盐燃料电池隔膜寿命,并进行了单电池运行稳定性试验。从电池隔膜阻气能力及离子传输能力两方面,提出以其最大阻气压力差Δp≥0.1MPa,孔隙率满足40%≤η≤70%作为其寿命指标。通过电池最大孔径测试法和隔膜模拟烧结孔隙率测试法,建立数学模型,推算出烧结时间为40000h所对应的隔膜最大孔径为0.9332μm,孔隙率为66.7%,皆小于其寿命指标值,这也说明,隔膜寿命超过40000h。单电池1000h寿命试验结果表明,以H2作燃料,电池性能稳定;以模拟煤气作燃料,电池性能快速衰减,主要由所发生的副反应引起。 相似文献
15.
16.
17.
熔融碳酸盐燃料电池 (MCFC)是目前商业化前景最好的燃料电池 ,特别适合大容量中心电站和联合循环发电。MCFC系统工作在高温、封闭、复杂的环境下 ,内部状态测量极为困难 ,试验分析代价很高 ,有时几乎是不可能的。为提高MCFC性能并确保其安全、长寿命运行 ,需要采用数值分析的方法 ,建立完善的MCFC数学模型 ,借助模型来进行性能仿真分析和动态控制设计。首先详细介绍了MCFC的电极、单电池、电堆、系统四个层次的建模以及MCFC控制的研究现状 ,并指出了现有模型的不足 ;然后讨论了电堆和系统两级建模的发展方向 ;最后 ,分析了MCFC系统的非线性、大时滞、分布参数、多输入多输出、有约束和随机干扰等特征 ,并根据这些特征 ,提出了两种适宜的控制方法 相似文献