共查询到20条相似文献,搜索用时 109 毫秒
1.
通过Hummers法制备氧化石墨后进行超声分散,得到分散均匀的氧化石墨烯(GO)分散液,物理复合滴涂制备氧化石墨烯/钒钛酸薄膜并对其感湿性能进行了研究,并通过交流与直流方法对其感湿机理进行了深入探究。结果表明:氧化石墨烯/钒钛酸复合膜的湿敏性能优于氧化石墨烯和钒钛酸单层膜,该湿敏薄膜的湿滞为8.3%RH,灵敏度变化2个数量级,响应时间为8 s,还原时间为10 s,曲线线性度良好。材料在低湿阶段主要表现为电子导电,中高湿阶段为电子导电和离子导电同时存在,高湿阶段主要表现为离子导电。 相似文献
2.
采用预辐照法将亲水性单体丙烯酸(AA)和对苯乙烯磺酸钠(SSS)接枝到疏水性高密度聚乙烯(HDPE)薄膜上,制备出新型的接枝膜湿敏元件.通过扫描电镜观测了辐照接枝前和接枝后HDPE膜的表面形貌,并通过红外光谱表征了膜的结构,同时测定了接枝膜湿敏元件的湿敏性能.实验结果表明,制备的接枝膜湿敏元件具有良好的湿敏特性,响应和恢复时间短.它具有较好的稳定性,能在高湿、高温环境下使用.实验结果也表明了接枝HDPE膜具有良好的湿敏性能. 相似文献
3.
4.
5.
6.
《中国胶粘剂》2016,(6)
以自制的双[4-(4-氨基苯氧基)苯基]砜(BAPS)、4,4′-二氨基二苯醚(ODA)和3,3′,4,4′-二苯醚四甲酸二酐(ODPA)为主要原料,采用共聚法合成了较高黏度的聚酰胺酸(PAA)溶液;然后该PAA溶液经高温酰亚胺化后,制得了TPI(热塑性聚酰亚胺)薄膜。研究结果表明:所有样品均具有较好的尺寸稳定性和较低的吸水率,并具有一定的热塑性;当n(BAPS)∶n(ODA)=50∶50时,相应的TPI薄膜具有相对最好的综合性能,其基本完成了酰亚胺化的转变过程,具有较好的耐热性[玻璃化转变温度(Tg)约为249℃,热失重10%时的温度约为510℃,800℃时的残炭率约为18%]和优异的电绝缘性能(介电常数为2.5、介电损耗为0.001 2和体积电阻率为2.3×10~(13)Ω·m)。 相似文献
7.
本文以MMA(甲基丙烯酸甲酯)与苯乙烯磺酸盐的共聚物作感湿膜,制成阻抗型湿度传感器,实验中发现,所制得的湿度传感器,电阻随相对湿度成指数规律变化,还具有湿滞作用小,能耐有机溶剂,耐水性和长期稳定性好等优点。 相似文献
8.
本文论述了采用湿法合成可在高温下应用的改性羟基磷灰石感湿粉料工艺有关性能,系统研究了应用上述改性HAP感湿粉料,采用厚膜丝网印工艺技术制成的湿敏元件和传感器的各项湿敏性能,探讨了有关工艺参数对元件性能的影响,通过中国建筑科学研究院空气调节研究所近两年的系统测试,首次给出了高温下的湿度-电阻特性曲线。 相似文献
9.
10.
11.
12.
13.
14.
通过溶液法,成功地制备了氧化铝掺杂聚酰亚胺纳米复合薄膜。探讨了Al2O3用量对聚酰亚胺纳米复合薄膜拉伸强度、热性能、电气强度的影响。结果发现,当Al2O3的质量分数达到5%时,整个复合体系的拉伸强度达到最大,相对于聚酰亚胺母体,复合材料的拉伸强度提高了16%;当Al2O3用量较小时,对聚酰亚胺纳米复合薄膜的Td10的影响不大,但当Al2O3的质量分数超过15%时,Td10则随Al2O3用量的增加而下降;同时实验结果表明,Al2O3的引入可以在一定程度上改善其复合体系的电气强度。 相似文献
15.
16.
陶瓷湿敏电阻器是湿度传感的重要元件,但因其阻-湿特性往往呈非线性而使用不便。本文利用最小二乘法对典型的铬镁钛系陶瓷湿敏电阻的阻-湿特性进行了线性拟合。结果表明,这种线性拟合方法简单可行,可用于非线性湿敏等敏感电阻器件的线性化处理。 相似文献
17.
以含支链3,3′-二乙基-4,4′-二氨基二苯甲烷(M-OEA)为二胺单体,采用高温一步法与四种二酐进行聚合,合成了四种聚酰亚胺(PI)树脂,并制备了一系列聚酰亚胺薄膜。对聚酰亚胺树脂进行了溶解性测试,并通过傅里叶红外光谱、紫外-可见分光光度计、差示扫描量热仪、热重分析仪、静态热机械分析仪及电子万能材料试验机对PI薄膜的结构、光学性能、热性能和力学性能进行了表征。结果表明,该系列树脂溶解性优异,薄膜热稳定性良好,5%热失重温度(Td5)均在390℃以上,玻璃化转变温度(Tg)均高于230℃,两种半脂环族PI薄膜的光学性能优异,紫外截止波长280 nm。 相似文献
18.
阻抗型聚合物湿度传感器HMPTAC/St共聚物感湿膜的感湿性能 总被引:3,自引:0,他引:3
将2 羟基 3 甲基丙烯酰氧丙基氯化三甲铵(HMPTAC)与苯乙烯(St)进行共聚反应,所得产物有良好的感湿性。用以制成的湿度传感器测湿范围宽(为10%~90%RH),再现性好(在±2%RH以内),耐环境变化。放置120天以上,感湿性能变化较小(在±3%以内)。 相似文献
19.
20.
在相同的原料配比下,通过三种不同溶液聚合工艺制得丙烯酸酯高聚物A01,A02和A03.它们的初黏性,180°剥离强度和固含量相差不大,然而A01和A02的黏度太大,导致涂布困难,而A03的持黏性较低.通过引入交联剂Al-acac和GA-240进行改性,大大提高了A03的持黏性.交联改性后的A03涂布于PET膜和铜版纸上制得压敏胶签,其中PET膜类标签可剥离性能良好,在不锈钢板,有机玻璃板、环氧板等材料上均可无损剥离.而制得铜版纸标签进行实物黏贴表明,在部分常见日用品(如水杯、手机壳,苹果等)均可无损剥离,但在鸡蛋揭离标签时会发生纸张撕裂现象. 相似文献