首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viral replication factors E1 and E2 of papillomaviruses are necessary and sufficient to replicate plasmids containing the minimal origin of DNA replication in transient assays. Under physiological conditions, the upstream regulatory region (URR) governs expression of the early viral genes. To determine the effect of URR elements on E1 and E2 expression specifically, and on the regulation of DNA replication during the various phases of the viral life cycle, we carried out a systematic replication study with entire genomes of human papillomavirus type 31 (HPV31), a high-risk oncogenic type. We constructed a series of URR deletions, spacer replacements, and point mutations to analyze the role of the keratinocyte enhancer (KE) element, the auxiliary enhancer (AE) domain, and the L1-proximal end of the URR (5'-URR domain) in DNA replication during establishment, maintenance, and vegetative viral DNA amplification. Using transient and stable replication assays, we demonstrate that the KE and AE are necessary for efficient E1 and E2 gene expression and that the KE can also directly modulate viral replication. KE-mediated activation of replication is dependent on the position and orientation of the element. Mutation of either one of the four Ap1 sites, the single Sp1 site, or the binding site for the uncharacterized footprint factor 1 reduced replication efficiency through decreased expression of E1 and E2. Furthermore, the 5'-URR domain and the Oct1 DNA binding site are dispensable for viral replication, since such HPV31 mutants are able to replicate efficiently in a transient assay, maintain a stable copy number over several cell generations, and amplify viral DNA under vegetative conditions. Interestingly, deletion of the 5'-URR domain leads to increased transient and stable replication levels. These findings suggest that elements in the HPV31 URR outside the minimal origin modulate viral replication through both direct and indirect mechanisms.  相似文献   

2.
3.
4.
Polyomavirus large T antigen binds to multiple 5'-G(A/G)GGC-3' pentanucleotide sequences in sites 1/2, A, B, and C within and adjacent to the origin of viral DNA replication on the polyomavirus genome. We asked whether the binding of large T antigen to one of these sites could influence binding to other sites. We discovered that binding to origin DNA is substantially stronger at pH 6 to 7 than at pH 7.4 to 7.8, a range often used in DNA binding assays. Large T antigen-DNA complexes formed at pH 6 to 7 were stable, but a fraction of these complexes dissociated at pH 7.6 and above upon dilution or during electrophoresis. Increased binding at low pH is therefore due at least in part to increased stability of protein-DNA complexes, and binding at higher pH values is reversible. Binding to fragments of origin DNA in which one or more sites were deleted or inactivated by point mutations was measured by nitrocellulose filter binding and DNase I footprinting. The results showed that large T antigen binds cooperatively to its four binding sites in viral DNA, suggesting that the binding of this protein to one of these sites stabilizes its binding to other sites via protein-protein contacts. Sites A, B, and C may therefore augment DNA replication by facilitating the binding of large T antigen to site 1/2 at the replication origin. ATP stabilized large T antigen-DNA complexes against dissociation in the presence, but not the absence, of site 1/2, and ATP specifically enhanced protection against DNase I digestion in the central 10 to 12 bp of site 1/2, at which hexamers are believed to form and begin unwinding DNA. We propose that large T antigen molecules bound to these multiple sites on origin DNA interact with each other to form a compact protein-DNA complex and, furthermore, that ATP stimulates their assembly into hexamers at site 1/2 by a "handover" mechanism mediated by these protein-protein contacts.  相似文献   

5.
Using quantitative gel retardation assays the properties of the bovine papilloma virus (BPV) origin recognition protein E1 and the effect of the viral E2 protein on the binding of E1 to BPV origin DNA were examined. As reported previously (Seo, Y.S., Mueller, F., Lusky, M., Gibbs, E., Kim, H.-Y., Phillips, B. and J. Hurwitz (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 2865-2869), the E1 protein binds specifically to DNA sequences within the BPV origin (ori+) of replication. We also show that the presence of MgCl2 and ATP could stabilize the E1 ori+ DNA complex. At low levels of E1, ori+ DNA binding was greatly stimulated by the viral E2 protein when the intact E2 binding site 12 was present on the DNA. In addition DNA-protein complexes formed in the presence of both E1 and E2 were more stable than those formed with E1 alone. In the absence of an E2 binding site the E2 protein inhibited the binding of E1 to the BPV origin. Spacing of 0 or 9 base pairs between the E1 binding site and the E2 binding site 12 abolished the stimulation of E1-DNA binding by E2, whereas spacing of 6 base pairs between the two binding sites allowed for efficient stimulation. The data presented account for a direct role of E2 in BPV DNA replication. We propose that the cooperative binding of both the E1 and E2 proteins to BPV ori+ DNA is mediated by protein-protein interactions and by protein-DNA interactions, which include the formation of specific contacts of E2 with DNA.  相似文献   

6.
Recent studies with adeno-associated virus (AAV) have shown that site-specific integration is directed by DNA sequence motifs that are present in both the viral replication origin and the chromosomal preintegration DNA and that specify binding and nicking sites for the viral regulatory Rep protein. This finding raised the question as to whether other parvovirus regulatory proteins might direct site-specific recombination with DNA targets that contain origin sequences functionally equivalent to those described for AAV. To investigate this question, active and inactive forms of the minute virus of mice (MVM) 3' replication origin, derived from a replicative-form dimer-bridge intermediate, were propagated in an Epstein-Barr virus-based shuttle vector which replicates as an episome in a cell-cycle-dependent manner in mammalian cells. Upon MVM infection of these cells, the infecting genome integrated into episomes containing the active-origin sequence reported to be efficiently nicked by the MVM regulatory protein NS1. In contrast, MVM did not integrate into episomes containing either the inactive form of the origin sequence reported to be inefficiently nicked by NS1 or the active form from which the NS1 consensus nick site had been deleted. The structure of the cloned MVM episomal recombinants displayed several features previously described for AAV episomal and chromosomal recombinants. The findings indicate that the rules which govern AAV site-specific recombination also apply to MVM and suggest that site-specific chromosomal insertions may be achievable with different autonomous parvovirus replicator proteins which recognize binding and nicking sites on the target DNA.  相似文献   

7.
BACKGROUND: Counteraction between activators and repressors is crucial for the regulation of a number of cell-specific enhancers, where an activator and a repressor are mutually competitive in binding to the same site. DeltaEF1 is a repressor protein of delta1-crystallin minimal enhancer DC5 binding at the CACCT site, and inhibits activator deltaEF3 from binding to the overlapped site. It has two zinc finger clusters N-fin and C-fin, close to N- and C-termini, respectively, and a homeodomain in the middle. deltaEF1 also binds to the E2-box sequence CACCTG, and represses E2-box-dependent enhancers. RESULTS: The mechanism of the repressor action of deltaEF1 was investigated by examining various deletion mutants of deltaEF1 for their activity to repress delta1-crystallin enhancer fragment HN which contained DC5 sequence and an additional activator site. Both zinc finger clusters were found to be essential for DNA binding and repression, but the homeodomain was not. In addition, the NR domain close to the N-terminus was required for full repression. The NR domain showed active repression when fused to the Gal4 DNA binding domain. Active repression by deltaEF1, dependent on the NR domain, was also demonstrated in a situation where the binding sites of deltaEF1 and deltaEF3 were separated. N-fin and C-fin in their isolated forms bind the 5'-(T/C)ACCTG-3' and 5'-(t/C)ACCT-3' sequences, respectively, while the homeodomain showed no DNA binding activity. An analysis of DNA binding of the delta(Int)F form, having both N-fin and C-fin, indicated that a single DNA binding domain is assembled from two zinc finger clusters. CONCLUSION: Two mechanisms are involved in the repressor action of deltaEF1. First, a binding site competition with an activator which depends on the integrity of both zinc finger clusters, and second, an active repression to silence an enhancer which is attributed to the NR domain.  相似文献   

8.
Human papillomavirus (HPV) E2 proteins regulate viral replication by binding to sites in the upstream regulatory region (URR) and by complex formation with the E1 origin recognition protein. In the genital HPV types, the distribution and location of four E2 binding sites (BS1 to BS4) which flank a single E1 binding site are highly conserved. We have examined the roles of these four E2 sites in the viral life cycle of HPV type 31 (HPV31) by using recently developed methods for the biosynthesis of papillomaviruses from transfected DNA templates (M. G. Frattini et al., Proc. Natl. Acad. Sci. USA 93:3062-3067, 1996). In transient assays, no single site was found to be necessary for replication, and mutation of the early promoter-proximal site (BS4) led to a fourfold increase in replication. Cotransfection of the HPV31 wild-type (HPV-wt) and mutant genomes with expression vectors revealed that E1 stimulated replication of HPV31-wt as well as the HPV31-BS1, -BS2, and -BS3 mutants. In contrast, increased expression of E2 decreased replication of these genomes. Replication of the HPV31-BS4 mutant genome was not further increased by cotransfection of E1 expression vectors but was stimulated by E2 coexpression. In stably transfected normal human keratinocytes, mutation of either BS1, BS3, or BS4 resulted in integration of viral genomes into host chromosomes. In contrast, mutation of BS2 had no effect on stable maintenance of episomes or copy number. Following growth of stably transfected lines in organotypic raft cultures, the differentiation-dependent induction of late gene expression and amplification of viral DNA of the BS2 mutant was found to be similar to that of HPV31-wt. We were unable to find a role for BS2 in our assays for viral functions. We conclude that at least three of the four E2 binding sites in the URRs of HPVs are essential for the productive viral life cycle. The specific arrangement of E2 binding sites within the URR appears to be more important for viral replication than merely the number of sites.  相似文献   

9.
The E1 and E2 proteins are the only virus-encoded factors required for human papillomavirus (HPV) DNA replication. The E1 protein is a DNA helicase responsible for initiation of DNA replication at the viral origin. Its recruitment to the origin is facilitated by binding to E2, for which specific recognition elements are located at the origin. The remaining replication functions for the virus, provided by the host cell's replication machinery, may be mediated by further interactions with E1 and E2. Histone H1 was identified as an HPV type 11 (HPV-11) E1-binding protein by far-Western blotting and by microsequence analyses of a 34-kDa protein purified by E1 affinity chromatography. E1 also bound in vitro to H1 isolated under native conditions in association with intact nucleosomes. In addition, E1 and H1 were coimmunoprecipitated by an E1 antiserum from a nuclear extract prepared from cells expressing recombinant E1. Bound H1 was displaced from HPV-11 DNA by the addition of E1, suggesting that E1 can promote replication initiation and elongation by alteration of viral chromatin structure and disruption of nucleosomes at the replication fork. Furthermore, a region of the HPV-11 genome containing the origin of replication was identified which had weaker affinity for H1 than that of the remaining genome. This result suggests that the presence of a DNA structure at or near the HPV origin facilitates initiation of DNA replication by exclusion of H1. These results are similar to those of studies of simian virus 40 DNA replication, in which a large T antigen-H1 interaction and an H1-resistant region at the origin of DNA replication have also been demonstrated.  相似文献   

10.
Papovaviruses are valuable models for the study of DNA replication in higher eukaryotic organisms, as they depend on host factors for replication of their DNA. In this study we investigate the interactions between the human papillomavirus type 11 (HPV-11) origin recognition and initiator protein E1 and human polymerase alpha/primase (pol alpha/primase) subunits. By using a variety of physical assays, we show that both 180- (p180) and 70-kDa (p70) subunits of pol alpha/primase interact with HPV-11 E1. The interactions of E1 with p180 and p70 are functionally different in cell-free replication of an HPV-11 origin-containing plasmid. Exogenously added p180 inhibits both E2-dependent and E2-independent cell-free replication of HPV-11, whereas p70 inhibits E2-dependent but stimulates E2-independent replication. Our experiments indicate that p70 does not physically interact with E2 and suggest that it may compete with E2 for binding to E1. A model of how E2 and p70 sequentially interact with E1 during initiation of viral DNA replication is proposed.  相似文献   

11.
The human papillomavirus (HPV) E1 and E2 proteins bind cooperatively to the viral origin of replication (ori), forming an E1-E2-ori complex that is essential for initiation of DNA replication. All other replication proteins, including DNA polymerase alpha-primase (polalpha-primase), are derived from the host cell. We have carried out a detailed analysis of the interactions of HPV type 16 (HPV-16) E1 with E2, ori, and the four polalpha-primase subunits. Deletion analysis showed that a C-terminal region of E1 (amino acids [aa] 432 to 583 or 617) is required for E2 binding. HPV-16 E1 was unable to bind the ori in the absence of E2, but the same C-terminal domain of E1 was sufficient to tether E1 to the ori via E2. Of the polalpha-primase subunits, only p68 bound E1, and binding was competitive with E2. The E1 region required (aa 397 to 583) was the same as that required for E2 binding but additionally contained 34 N-terminal residues. In confirmation of these differences, we found that a monoclonal antibody, mapping adjacent to the N-terminal junction of the p68-binding region, blocked E1-p68 but not E1-E2 binding. Sequence alignments and secondary-structure prediction for HPV-16 E1 and other superfamily 3 (SF3) viral helicases closely parallel the mapping data in suggesting that aa 439 to 623 constitute a discrete helicase domain. Assuming a common nucleoside triphosphate-binding fold, we have generated a structural model of this domain based on the X-ray structures of the hepatitis C virus and Bacillus stearothermophilus (SF2) helicases. The modelling closely matches the deletion analysis in suggesting that this region of E1 is indeed a structural domain, and our results suggest that it is multifunctional and critical to several stages of HPV DNA replication.  相似文献   

12.
13.
A selection procedure was devised to study the role of cis -acting sequences at origins of DNA replication. Two regions in Herpes simplex virus oriS were examined: an AT-rich spacer sequence and a putative binding site, box III, for the origin binding protein. Plasmid libraries were generated using oligonucleotides with locally random sequences. The library, amplified in Escherichia coli , was used to transfect BHK cells followed by superinfection with HSV-1. Replicated plasmids resistant to Dpn I cleavage were amplified in E. coli. The selection scheme was repeated. Plasmids were isolated at different stages of the procedure and their replication efficiency was determined. Efficiently replicating plasmids had a high AT content in the spacer sequence as well as a low helical stability of this region. In contrast, this was not seen using the box III library. We also noted that the wild type sequence invariably dominated the library after five rounds of selection. These plasmids arose from recombination between plasmids and viral DNA. Our results imply that a large group of sequences can mechanistically serve as origins of DNA replication. In a viral system, however, where the initiation process might be rate-limiting, this potentially large group of sequences would always converge towards the most efficient replicator.  相似文献   

14.
Physical interactions of simian virus 40 (SV40) large tumor (T) antigen with cellular DNA polymerase alpha-primase (Pol/Prim) and replication protein A (RPA) appear to be responsible for multiple functional interactions among these proteins that are required for initiation of viral DNA replication at the origin, as well as during lagging-strand synthesis. In this study, we mapped an RPA binding site in T antigen (residues 164 to 249) that is embedded within the DNA binding domain of T antigen. Two monoclonal antibodies whose epitopes map within this region specifically interfered with RPA binding to T antigen but did not affect T-antigen binding to origin DNA or Pol/Prim, ATPase, or DNA helicase activity and had only a modest effect on origin DNA unwinding, suggesting that they could be used to test the functional importance of this RPA binding site in the initiation of viral DNA replication. To rule out a possible effect of these antibodies on origin DNA unwinding, we used a two-step initiation reaction in which an underwound template was first generated in the absence of primer synthesis. In the second step, primer synthesis was monitored with or without the antibodies. Alternatively, an underwound primed template was formed in the first step, and primer elongation was tested with or without antibodies in the second step. The results show that the antibodies specifically inhibited both primer synthesis and primer elongation, demonstrating that this RPA binding site in T antigen plays an essential role in both events.  相似文献   

15.
16.
17.
18.
19.
20.
The repressor protein of bacteriophage P22 binds to DNA as a homodimer. This dimerization is absolutely required for DNA binding. Dimerization is mediated by interactions between amino acids in the carboxyl (C)-terminal domain. We have constructed a plasmid, p22CT-1, which directs the overproduction of just the C-terminal domain of the P22 repressor (P22CT-1). Addition of P22CT-1 to DNA-bound P22 repressor causes the dissociation of the complex. Cross-linking experiments show that P22CT-1 forms specific heterodimers with the intact P22 repressor protein, indicating that inhibition of P22 repressor DNA binding by P22CT-1 is mediated by the formation of DNA binding-inactive P22 repressor:P22CT-1 heterodimers. We have taken advantage of the highly conserved amino acid sequences within the C-terminal domains of the P22 and 434 repressors and have created chimeric proteins to help identify amino acid regions required for dimerization specificity. Our results indicate that the dimerization specificity region of these proteins is concentrated in three segments of amino acid sequence that are spread across the C-terminal domain of each of the two phage repressors. We also show that the set of amino acids that forms the cooperativity interface of the P22 repressor may be distinct from those that form its dimer interface. Furthermore, cooperativity studies of the wild-type and chimeric proteins suggest that the location of cooperativity interface in the 434 repressor may also be distinct from that of its dimerization interface. Interestingly, changes in the dimer interface decreases the ability of the 434 repressor to discriminate between its wild-type binding sites, O(R)1, O(R)2, and O(R)3. Since 434 repressor discrimination between these sites depends in large part on the ability of this protein to recognize sequence-specific differences in DNA structure and flexibility, this result indicates that the C-terminal domain is intimately involved in the recognition of sequence-dependent differences in DNA structure and flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号