共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a novel robust observer-based adaptive controller is presented using a proposed simplified type-2 fuzzy neural network (ST2FNN) and a new three dimensional type-2 membership function is presented. Proposed controller can be applied to the control of high-order nonlinear systems and adaptation of the consequent parameters and stability analysis are carried out using Lyapunov theorem. Moreover, a new adaptive compensator is presented to eliminate the effect of the external disturbance, unknown nonlinear functions approximation errors and sate estimation errors. In the proposed scheme, using the Lyapunov and Barbalat's theorem it is shown that the system is stable and the tracking error of the system converges to zero asymptotically. The proposed method is simulated on a flexible joint robot, two-link robot manipulator and inverted double pendulums system. Simulation results confirm that in contrast to other robust techniques, our proposed method is simple, give better performance in the presence of noise, external disturbance and uncertainties, and has less computational cost. 相似文献
2.
In real life, information about the world is uncertain and imprecise. The cause of this uncertainty is due to: deficiencies on given information, the fuzzy nature of our perception of events and objects, and on the limitations of the models we use to explain the world. The development of new methods for dealing with information with uncertainty is crucial for solving real life problems. In this paper three interval type-2 fuzzy neural network (IT2FNN) architectures are proposed, with hybrid learning algorithm techniques (gradient descent backpropagation and gradient descent with adaptive learning rate backpropagation). At the antecedents layer, a interval type-2 fuzzy neuron (IT2FN) model is used, and in case of the consequents layer an interval type-1 fuzzy neuron model (IT1FN), in order to fuzzify the rule’s antecedents and consequents of an interval type-2 Takagi-Sugeno-Kang fuzzy inference system (IT2-TSK-FIS). IT2-TSK-FIS is integrated in an adaptive neural network, in order to take advantage the best of both models. This provides a high order intuitive mechanism for representing imperfect information by means of use of fuzzy If-Then rules, in addition to handling uncertainty and imprecision. On the other hand, neural networks are highly adaptable, with learning and generalization capabilities. Experimental results are divided in two kinds: in the first one a non-linear identification problem for control systems is simulated, here a comparative analysis of learning architectures IT2FNN and ANFIS is done. For the second kind, a non-linear Mackey-Glass chaotic time series prediction problem with uncertainty sources is studied. Finally, IT2FNN proved to be more efficient mechanism for modeling real-world problems. 相似文献
3.
由于建立精确数学模型的困难以及控制过程中各种不确定性的存在, 柔索驱动并联机构的水平调节具有一定的难度. 针对该问题, 提出了一种基于二型模糊神经网络的逆控制方案. 该控制方案中的二型模糊神经网络实现了对水平调节过程逆动态的逼近以及对各种不确定性的处理. 采用迭代最小二乘算法对二型模糊神经网络区间权重进行了优化. 最后, 将基于二型模糊神经网络的逆控制方案在实际的控制对象上进行了实验, 并与其相对应的基于一型模糊神经网络的逆控制方案进行了比较. 实验结果表明所提出的控制方案是有效的且采用二型模糊神经网络时能获得更好的控制效果. 相似文献
4.
主要探讨一种新的系统方法——二型模糊系统在控制上的应用.文章先介绍了二型模糊集合和系统的基本概念和基本方法,然后集中推导TS模型下规则的输出形式,推广一型系统的特性,从而获得二型模糊控制器和观测器的表达式、稳定性以及其它特性分析方法,并以小车倒立摆仿真验证.最后文章从整体上分析和比较了传统系统、一型模糊系统和二型模糊系统的主要特点和不同点. 相似文献
5.
模糊神经网络控制器是由模糊控制和神经网络相结合构成,它不依赖被控对象的数学模型,并能自动产生模糊控制规则。将模糊神经网络控制器应用于锅炉燃烧器控制器的设计中。结果表明,使用这种控制器可以取得良好的控制效果。 相似文献
6.
针对复杂不确定非线性系统的辨识问题,提出一种基于聚类的自组织区间二型模糊神经网络学习算法.首先采用具有两个不同加权参数的FCM算法对输入数据进行划分来获取规则前件的不确定均值,同时结合聚类有效性标准确定模糊规则数目,从而自动完成神经网络的结构辨识和规则前件参数辨识;随后给出了基于梯度下降法和Lyapunov函数稳定收敛定理的规则后件权向量学习速率的自适应学习算法.通过非线性系统辨识实例,验证了该算法与其他方法相比具有更快的收敛速度和更高的逼近精度;并且利用该算法建立了某市电力短期负荷预测模型,结果表明该模型具有较高的预测精度,泛化性能更佳. 相似文献
7.
一型模糊集可以建模单个用户的语义概念中的不确定性, 即个体内不确定性. 一型模糊系统在控制和机器学习中得到了大量成功应用. 区间二型模糊集能同时建模个体内不确定性和个体间不确定性, 因而在很多应用中显示了比一型模糊系统更好的性能, 是近年来的研究热点. 本文首先介绍了区间二型模糊集的重要概念和理论研究进展, 总结了其在决策和机器学习中的成功应用, 然后介绍了区间二型模糊系统的基本操作和理论研究进展, 并回顾了其在控制和机器学习中的典型应用. 最后, 对区间二型模糊集和模糊系统未来的研究方向进行了展望. 相似文献
8.
9.
Chaio-Shiung Chen 《Information Sciences》2009,179(15):2676-2688
This paper proposes a novel dynamic structure neural fuzzy network (DSNFN) to address the adaptive tracking problems of multiple-input-multiple-output (MIMO) uncertain nonlinear systems. The proposed control scheme uses a four-layer neural fuzzy network (NFN) to estimate system uncertainties online. The main feature of this DSNFN is that it can either increase or decrease the number of fuzzy rules over time based on tracking errors. Projection-type adaptation laws for the network parameters are derived from the Lyapunov synthesis approach to ensure network convergence and stable control. A hybrid control scheme that combines the sliding-mode control and the adaptive bound estimation control with different weights improves system performance by suppressing the influence of external disturbances and approximation errors. As the employment of the DSNFN, high-quality tracking performance could be achieved in the system. Furthermore, the trained network avoids the problems of overfitting and underfitting. Simulations performed on a two-link robot manipulator demonstrate the effectiveness of the proposed control scheme. 相似文献
10.
交通系统的模糊控制及其神经网络实现 总被引:65,自引:8,他引:65
本文根据城市交通系统的特点设计了单个路口信号灯的模糊控制器,研究了用神经网络实现模糊控制器的方法和过程,并对该控制器进行了仿真研究,本文所设计的控制方法适合于各种车流大小随机变化的单个路口,且决策过程迅速、合理,无需对车流进行预测,是一种实时单点控制方法,由于模糊控制器由神经网络实现,控制具有学习和联想功能,仿真结果说明了该方法的有效性。 相似文献
11.
In this paper, an interval type-2 fuzzy sliding-mode controller (IT2FSMC) is proposed for linear and nonlinear systems. The proposed IT2FSMC is a combination of the interval type-2 fuzzy logic control (IT2FLC) and the sliding-mode control (SMC) which inherits the benefits of these two methods. The objective of the controller is to allow the system to move to the sliding surface and remain in on it so as to ensure the asymptotic stability of the closed-loop system. The Lyapunov stability method is adopted to verify the stability of the interval type-2 fuzzy sliding-mode controller system. The design procedure of the IT2FSMC is explored in detail. A typical second order linear interval system with 50% parameter variations, an inverted pendulum with variation of pole characteristics, and a Duffing forced oscillation with uncertainty and disturbance are adopted to illustrate the validity of the proposed method. The simulation results show that the IT2FSMC achieves the best tracking performance in comparison with the type-1 Fuzzy logic controller (T1FLC), the IT2FLC, and the type-1 fuzzy sliding-mode controller (T1FSMC). 相似文献
12.
As an undetachable module of type-2 (T2) fuzzy computations and reasoning, type-reduction methods play an important role in various fuzzy disciplines including fuzzy logic systems and fuzzy clustering. Importance of type-reduction techniques lies in the fact that they are the main tools for collecting the entire inherent vagueness of the data. Therefore, type-reduction methods form the output of type-2 fuzzy sets (T2 FSs) as the representative of the entire uncertainty in a given space. Hence, their accuracy, precision, and performance speed is of much interest. This paper, presents a comprehensive review on various type-reduction and defuzzification strategies for general and interval type-2 fuzzy sets and systems. It is tried to analyze the existing approaches from different point of views accompanied by extensive comparisons on different features of type-reduction methods to facilitate further research studies by the fuzzy community. 相似文献
13.
The setup and control of the finishing mill roll gap positions required to achieve the desired strip head thickness as measured by the finish mill exit X-ray gauge sensor is made by an intelligent controller based on an interval type-2 fuzzy logic system. The controller calculates the finishing mill stand screw positions required to achieve the strip finishing mill exit target thickness. The interval type-2 fuzzy head gage controller uses as inputs the transfer bar thickness, the width and the temperature at finishing mill entry, the strip target thickness, the width and the temperature at finishing mill exit, the stand work roll diameter, the stand work roll speed, the stand entry thickness, the stand exit thickness, the stand rolling force, and the %C of the strip. Taking into account that the measurements and inputs to the proposed system are modeled as type-1 non-singleton fuzzy numbers, we present the so called interval type-1 non-singleton type-2 fuzzy logic roll gap controller. As reported in the literature, interval type-2 fuzzy logic systems have greater non-linear approximation capacity than that of its type-1 counterpart and it has the advantage to develop more robust and reliable solutions than the latter. The experiments of these applications were carried out for three different types of coils, from a real hot strip mill. The results proved the feasibility of the developed system for roll gap control. Comparison against the mathematical based model shows that the proposed interval type-2 fuzzy logic system equalizes the performance in finishing mill stand screw positions setup and enhances the achieved strip thickness under the tested conditions characterized by high uncertainty levels. 相似文献
14.
15.
将区间二型模糊系统与神经网络系统相结合,运用分组的思想构造抗噪逼近器,并用提出的抗噪性能评价标准进行抗噪衡量。实验结果表明,该方法具有更好的逼近能力和抗噪能力。 相似文献
16.
Rolling-element bearings are critical components of rotating machinery. It is important to accurately predict in real-time the health condition of bearings so that maintenance practices can be scheduled to avoid malfunctions or even catastrophic failures. In this paper, an Interval Type-2 Fuzzy Neural Network (IT2FNN) is proposed to perform multi-step-ahead condition prediction of faulty bearings. Since the IT2FNN defines an interval type-2 fuzzy logic system in the form of a multi-layer neural network, it can integrate the merits of each, such as fuzzy reasoning to handle uncertainties and neural networks to learn from data. The interval type-2 fuzzy linguistic process in the IT2FNN enables the system to handle prediction uncertainties, since the type-2 fuzzy sets are such sets whose membership grades are type-1 fuzzy sets that can be used in failure prediction due to the difficult determination of an exact membership function for a fuzzy set. Noisy data of faulty bearings are used to validate the proposed predictor, whose performance is compared with that of a prevalent type-1 condition predictor called Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that better prediction accuracy can be achieved via the IT2FNN. 相似文献
17.
一种基于人工免疫原理的最优模糊神经网络控制器 总被引:1,自引:0,他引:1
提出了一种基于人工免疫原理的最优RBF模糊神经网络控制器设计方案.首先给出了控制器结构,其次将免疫进化算法用于控制器参数的优化,设计了一种满足二次型性能指标的最优RBF模糊神经网络控制器.将该控制器用于控制实际倒立摆系统,并采用状态变量合成方法以大大减少模糊规则的数目,实验结果验证了该控制器的有效性. 相似文献
18.
Brain–computer interfacing is an emerging field of research where signals extracted from the human brain are used for decision making and generation of control signals. Selection of the right classifier to detect the mental states from electroencephalography (EEG) signal is an open area of research because of the signal’s non-stationary and Ergodic nature. Though neural network based classifiers, like Adaptive Neural Fuzzy Inference System (ANFIS), act efficiently, to deal with the uncertainties involved in EEG signals, we have introduced interval type-2 fuzzy system in the fray to improve its uncertainty handling. Also, real-time scenarios require a classifier to detect more than two mental states. Thus, a multi-class discriminating algorithm based on the fusion of interval type-2 fuzzy logic and ANFIS, is introduced in this paper. Two variants of this algorithm have been developed on the basis of One-Vs-All and One-Vs-One methods. Both the variants have been tested on an experiment involving the real-time control of robot arm, where both the variants of the proposed classifier, produces an average success rate of reaching a target to 65% and 70% respectively. The result shows the competitiveness of our algorithm over other standard ones in the domain of non-stationary and uncertain signal data classification. 相似文献
19.
以广西西南部前汛期5、6月25个气象站平均逐日降水量作为预报对象,采用自然正交分解方法和模糊化方法对输入因子预处理后,结合Modular模糊神经网络建立了一种新的降水预报模型,并进行了逐日业务预报应用试验.结果表明,该降水预报模型比常规Modular模糊神经网络方法及逐步回归方法有更高的预报精度,具有较好的业务应用前景. 相似文献
20.
In this paper we present a method for response integration in multi-net neural systems using interval type-2 fuzzy logic and fuzzy integrals, with the purpose of improving the performance in the solution of problems with a great volume of information. The method can be generalized for pattern recognition and prediction problems, but in this work we show the implementation and tests of the method applied to the face recognition problem using modular neural networks. In the application we use two interval type-2 fuzzy inference systems (IT2-FIS); the first IT2-FIS was used for feature extraction in the training data, and the second one to estimate the relevance of the modules in the multi-net system. Fuzzy logic is shown to be a tool that can help improve the results of a neural system by facilitating the representation of human perceptions. 相似文献