首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
曹博  王辉  吕鑫  王娟 《功能材料》2022,(6):6230-6236
P2型层状氧化物正极材料在充放电过程中容易产生Na+/空位有序性和P2到O2/OP4相位转变,导致多个充放电平台。低钠P2型层状氧化物在深度脱钠时容易造成材料结构不稳定,限制了可逆容量。这些缺陷造成P2型层状氧化物正极材料倍率性差和容量快速衰减。为了抑制Na+/空位有序性和相位转变,采用溶剂热法结合Li+掺杂(0,0.05%,0.1%,0.15%摩尔分数)制备出了无多个电压平台和无相位转变的P2型Na0.85Mn0.6Ni0.3Li01O2(NMNL-0.1)层状氧化物正极材料。NMNL-0.1正极材料在2 C电流密度下进行200次循环后的容量保持率为83%,而未掺杂锂的P2型Na0.85Mn2/3Ni1/3O2(NMN)样品的容量保持率为30%。在20 C电流密度下NMNL-0.1正极材料的放电比容量为62.5 mAh·g<...  相似文献   

2.
LiNi0.5Co0.2Mn0.3O2正极材料因能量密度高、循环稳定性好及安全性高而被认为是最有前途的高能量密度锂离子电池正极材料之一。然而,传统的常规碳酸酯基电解液的耐氧化性较差,导致LiNi0.5Co0.2Mn0.3O2正极材料在高电压条件下的容量快速衰减。在氟代碳酸乙烯酯(FEC)的基础上,研究了氟代线性碳酸酯(如二(2,2,2-三氟乙基)碳酸酯(TFEC)及甲基(2,2,2-三氟乙基)碳酸酯(MTFEC))替代碳酸二乙酯(DEC)在高电压下的循环稳定性。电化学测试结果表明,TFEC、MTFEC替代DEC后,4.5 V LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池45℃循环700圈后容量保持率分别从45.5%提高到72.5%、81.6%。线性扫描伏安法(LSV)、扫描电镜(SEM)、透射电镜(TEM)、X射线...  相似文献   

3.
由于钴价格的不稳定,无钴高镍LiNi0.9Mn0.1O2被认为是未来有潜力的正极材料,但是倍率性能弱和循环寿命短的问题阻碍了其商业化。通过Mo元素对无钴高镍LiNi0.9Mn0.1O2正极材料进行掺杂改性,延缓材料在充电阶段的有害相变,进而提升材料的倍率性能和循环稳定性。在1C倍率下,循环500圈后有着73.3%的容量保持率;即使在10C的高倍率下,依然有着152.05mAh/g的高放电容量。本研究为用于电动汽车的锂离子正极材料提供了新的选择。  相似文献   

4.
用一种简单的方法制备了高性能的高电压尖晶石正极材料, 主要是调控正极材料中锂与过渡金属的摩尔比, 即通过Ni0.25Mn0.75(OH)2与Li2CO3进行高温固相反应制备了非化学计量比的Li1.05Ni0.5Mn1.5O4和化学计量比的LiNi0.5Mn1.5O4尖晶石型高电压正极材料。用扫描电子显微镜、X射线衍射、中子衍射、拉曼光谱、X射线光电子能谱以及循环伏安曲线对其形貌、晶体结构及元素价态和电化学性能进行了表征。研究发现, 非化学计量比的Li1.05Ni0.5Mn1.5O4中由于金属离子随机分布于16 d位置, 所以Ni/Mn阳离子无序化程度更高。非化学计量比的高电压正极材料具有更为优异的倍率性能, 并且在400次循环后比容量保持率高达91.2%。同时, 原位X射线衍射测试结果表明, 在充放电过程中非化学计量比的高电压正极材料发生连续单一的相转变, 可以提高晶体结构的稳定性。因此, 非计量比的尖晶石Li1.05Ni0.5Mn1.5O4正极材料在高能量密度的锂离子电池中具有更广阔的应用前景。  相似文献   

5.
为改善LiNi0.5Co0.2Mn0.3O2(NCM)锂离子电池三元正极材料的电化学性能,采用液相蒸发法将WO3包覆于NCM表面,得到NCM@WO3复合正极材料。通过XRD、SEM和TEM对NCM@WO3复合材料的结构和形貌进行表征,利用充放电测试、循环伏安及交流阻抗测试对其电化学性能进行表征。结果表明,当WO3包覆量为3wt%时,NCM@WO3复合材料性能最佳,在0.5 C下的首次放电比容量为179.9 mA·hg-1,不可逆容量损失降低至42.4 mA·hg-1,循环50圈后容量保持率为98.3%。WO3的包覆提高了锂离子扩散速率,减少了电极材料与电解液的副反应,NCM@WO3复合材料的电化学性能得到提升。   相似文献   

6.
采用无焰燃烧法在500℃反应3 h,然后分别在600、650、700和750℃二次焙烧6 h制备了尖晶石型Li1.02Ni0.05Mn1.93O4正极材料。结果表明,不同焙烧温度制备的Li-Ni共掺材料没有改变LiMn2O4的立方尖晶石结构,且随着焙烧温度的升高,颗粒尺寸变大,结晶性提高。二次焙烧温度为700℃的Li1.02Ni0.05Mn1.93O4单晶多面体晶粒正极材料具有{111}、{110}和{100}面,且电化学性能较优,在1 C倍率下初始放电比容量为108.2 mA·h·g?1,循环500次后的容量保持率为76.8%;在5 C下首次放电比容量可达到99.0 mA·h·g?1,1000次循环后,仍能维持72.1%的容量保持率;在10 C下仍显示出71.3 mA·h·g?1的首次放电比容量及经500次循环后86.4%的容量保持率。并且其具有较大的Li+扩散系数和较小的表观活化能。Li-Ni共掺LiMn2O4单晶多面体材料能够有效抑制Jahn-Teller效应,减小Mn的溶解及增加Li+扩散通道,使材料的晶体结构稳定,提高倍率性能和循环性能。   相似文献   

7.
庄新蝶  全祖浩  周朋飞 《功能材料》2023,(1):1176-1180+1185
锂离子电池由于高能量密度和长循环寿命,被广泛应用在3C电子产品和电动汽车领域,但由于锂资源储量低、分布不均和较高的价格,使得锂离子电池在规模储能领域的应用受到限制。同时,钠离子电池凭借其较低的成本已逐渐发展为锂离子电池的替代品。但Na+较大的离子半径使得钠离子电池在实际中的应用受到限制,因此开发高性能储钠电极材料,成为钠离子电池的研究重点。采用溶胶凝胶法制备Ti掺杂隧道型Na0.55-MnxTi1-xO2作为钠离子电池正极材料,并对其电化学性能和充放电过程相结构演变进行探究。实验表明掺杂适量Ti元素有利于减轻Na+嵌入/脱出过程中晶格参数和相结构的变化,其中Na0.55Mn0.9Ti0.1O2材料表现出最佳的循环稳定性和倍率性能,同时该材料在低温为10℃时的首圈放电比容量为89.5 mAh·g-1,在循环300圈后,容量保持率为91.4%,表明隧道...  相似文献   

8.
LiNi0.5Mn1.5O4正极材料由于其高电压、无钴和高能量密度优势而受到关注,但高电压下易受电解液腐蚀,循环稳定性差限制了其进一步应用。本文采用低温自蔓延法制备出高电压LiNi0.5Mn1.5O4材料,再使用不同糖类作为碳源进行包覆改性研究。结果表明,在400℃/Air条件下,以壳聚糖为碳源制备的LiNi0.5Mn1.5O4复合材料性能明显改善,在148 mA·h/g下循环400次后放电比容量仍有113.3 mA·h/g,容量保持率为91.07%。这主要归功于材料表面裂解的碳层提高了材料的导电性,缓解了电解液的侵蚀,降低了电极反应极化,提高了锂离子扩散速率。本文利用廉价的糖类作为碳源,合成工艺简单,为镍锰酸锂的应用提供了新的思路。  相似文献   

9.
用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。  相似文献   

10.
用固相反应法制备(Gd1-xErx)2(Zr0.8Ti0.2)2O7(摩尔分数x=0,0.2,0.4)陶瓷并测试其晶体结构、显微形貌和物理性能,研究了Er2O3掺杂的影响。结果表明,(Gd1-xErx)2(Zr0.8Ti0.2)2O7陶瓷具有立方烧绿石结构,显微结构致密,在室温至1200℃高温相的稳定性良好;Er3+掺杂降低了陶瓷材料的热导率和平均热膨胀系数,当x=0.2时,其1000℃的热导率最低(为1.26 W·m-1·k-1)。同时,Er3+掺杂还提高了这种材料的硬度和断裂韧性。  相似文献   

11.
MnO2为有前景的超级电容器正极材料,具有较高的理论比电容及良好的循环稳定性,但电子电导性不佳限制了其应用。采用一步水热法制备了还原氧化石墨烯(RGO)/NixMn1-x/2O2复合材料。通过XRD、SEM、TEM、FTIR、电化学分析等手段对制备的RGO/NixMn1-x/2O2物相组成、微观形貌和电化学性能进行了表征和分析。电化学测试结果表明:Ni元素的引入提高了MnO2的电容性能,以水热法制备的MnO2的比电容为66 F/g (扫描速度10 mV/s),而Ni元素掺杂量x=0.02时,Ni0.02Mn0.99O2比电容为111 F/g;材料中引入RGO后,RGO/NixMn1-x/2O2复合材料电容性能进一步提高,加入2wt%的RGO时,RGO/Ni0.02Mn0.99O2的比电容为136 F/g。RGO的引入提高了活性材料的电子迁移速率,Ni元素的掺杂造成了MnO2晶格中存在适量的点缺陷,提高了其导电性。以RGO/NixMn1-x/2O2为正极的超级电容器可同时具备双电层电容器和赝电容器的优点,以Ni掺杂MnO2和RGO的负载协同提高了该复合材料电化学性能。  相似文献   

12.
本文采用溶胶-凝胶法制备了钴和钛共掺杂的层状LiNi0.82Co0.15Ti0.03O2正极材料,研究了离子掺杂对LiNiO2材料电化学性能的影响。XRD和XPS分析显示,钴和钛共掺杂可以抑制Li+和Ni2+离子在Li层的混排现象。电化学测试结果表明,钴单元素掺杂可以显著提高LiNiO2材料的倍率性能,而钛单掺杂则提高了材料的循环稳定性。进一步地,通过钴钛共掺杂的协同作用,可以使LiNiO2材料的倍率性能和循环稳定性同时得到极大的提高。在200 mA/g的电流密度下循环200次,LiNi0.82Co0.15Ti0.03O2材料的容量保持率高达94.4%,而未掺杂的LiNiO2材料容量保持率仅为57.1%;且在1000 mA/g的电流密度下,放电比容量仍能维持在100 mAh/g左右。  相似文献   

13.
富锂层状氧化物是构筑高能量密度锂离子电池富有潜力的正极材料.然而,由于不可逆的结构变化和缓慢的界面动力学,传统的多晶富锂层状氧化物正极材料循环和倍率性能较差.本文提出了一种聚乙烯基吡咯烷酮(PVP-K30)辅助共沉淀制备单晶Li1.2Mn0.54Ni0.13Co0.13O2纳米片的方法.这种方法操作简单、成本低且便于放大生产.所制备的单晶纳米片内部晶格连续且无晶界,缩短了Li+的嵌入/脱嵌路径,加快了电极反应动力学过程.单晶结构还能抑制层状相向尖晶石相的不可逆相变和颗粒内部裂纹的形成,起到稳定层状结构的作用.电化学测试结果表明,所制备的Li1.2Mn0.54Ni0.13Co0.13O2单晶纳米片在0.1 C倍率下的可逆容量为254.5 mA h g-1,在5 C高倍率下循环1000次后容量保持率为71.9%.这种简单的制备纳米...  相似文献   

14.
富锂层状氧化物材料具有较高的比容量,被认为是下一代先进锂离子电池正极材料。采用丙烯酸热聚合法和柠檬酸溶胶-凝胶法分别合成了纳米富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2,并进行Mg2+掺杂改性。通过扫描电子显微镜、X射线粉末衍射仪对制备的正极材料进行形貌和结构表征,并组装成纽扣电池进行充放电性能测试和电化学阻抗谱分析。结果表明,丙烯酸热聚合法合成的正极材料粒径均匀,结晶度更高;与未掺杂样品相比,掺杂Mg2+的正极材料首次库伦效率从67.66%提高到73.34%,循环性能显著改善。  相似文献   

15.
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。  相似文献   

16.
通过一种简便的方法制备氧空位缺陷的氢化TiO2包覆核壳结构C/Fe3O4@rGO(H-TiO2/C/Fe3O4@rGO)复合材料,作为锂离子电池(lithium-ion batteris, LIBs)高性能阳极材料。TiO2在Li+脱嵌过程中体积膨胀系数约为4%,可缓解Fe3O4在充放电过程中的体积膨胀,提高阳极材料结构的稳定性。同时,通过氢化处理改善TiO2较低的电导率(约1×10-12 S·m-1)。H-TiO2/C/Fe3O4@rGO在0.3 A·g-1的电流密度下循环200周次后比容量为867 mAh·g-1,在1 A·g-1的电流密度下循环700周次的比容量为505...  相似文献   

17.
高镍正极材料LiNi0.6Co0.2Mn0.2O2(NCM622)由于比容量高、价格低等优点,被认为是最有前景的正极材料之一。在介绍NCM622存在的问题的基础上,分别从合成方法、改进措施等方面进行总结,并对NCM622的未来发展进行展望。  相似文献   

18.
目前,新型正极材料的研究主要集中于提高材料的能量密度和安全性等。其中,单晶型镍钴锰三元材料具有耐高压、高热力学稳定性和高循环稳定性等优异的综合性能,是极具发展前景的正极材料之一。采用LiOH作为熔盐、添加LiNO3助熔剂降低熔点,烧结制备单晶LiNi0.75Co0.10Mn0.15O2材料。结果表明,当烧结温度为860℃、前驱体与混合锂盐的物质的量比为1∶2时,所合成的单晶正极材料的Li+/Ni2+混排率较低,晶体颗粒粒径为1.5~2.5μm。该材料具有良好的循环稳定性,首圈放电容量为172.3 mAh/g,在常温、2.8~4.4 V内,以1C倍率循环100次后,其容量保持率可达86.3%。  相似文献   

19.
以Ti(OC4H9)4、CH3COOLi·2H2O和GeO2为原料, 采用溶胶-凝胶法合成了尖晶石型Li4Ti5-xGexO12(x=0、0.05、0.1、0.15)电极材料。通过X射线衍射(XRD)、扫描电镜(SEM)、充放电测试、循环伏安(CV)以及交流阻抗对材料进行结构、形貌及电化学性能表征。研究结果表明, 适量Ge4+掺杂不会改变Li4Ti5O12的尖晶石结构, 但对其颗粒尺寸和形貌均产生影响。由于掺Ge4+后样品的颗粒尺寸减小, 使得Ge4+掺杂Li4Ti5O12倍率性得到不同程度的提高。其中Li4Ti4.9Ge0.1O12显示出较好的倍率性和循环稳定性, 0.2C下的首次放电容量为172.43 mAh/g, 5C下循环100次后比容量为140.62 mAh/g, 容量保持率为97.3%。  相似文献   

20.
采用典型的溶胶-凝胶法,在高镍LiNi0.8Co0.1Mn0.1O2正极颗粒表面包覆不同含量的Li3PO4锂离子导体。利用X射线衍射仪,扫描电镜对Li3PO4包覆前后的LiNi0.8Co0.1Mn0.1O2样品的晶体结构和微观形貌进行分析。结果表明,合成材料的层状结构明显,阳离子混排度低,并且Li3PO4成功包覆在LiNi0.8Co0.1Mn0.1O2颗粒表面。另外,对4个样品进行了首次充放电,倍率放电和循环性能比较,结果表明经过Li3PO4包覆后的正极材料的综合电化学性能明显比未包覆样品优越。首次库伦效率从未包覆样品的84.2%提高到2%(质量分数)Li3PO4包覆样品的89.2%。而且在5C高倍率,2%(质量分数)Li3PO4包覆LiNi0.8Co0.1Mn0.1O2的放电比容量是129.7 mAh/g,远远高于未包覆样品的92.6 mAh/g。同时,在常温和高温环境下循环100次后,2%(质量分数)Li3PO4包覆LiNi0.8Co0.1Mn0.1O2的容量保持率比未包覆样品分别高出7.1%和9.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号