共查询到20条相似文献,搜索用时 6 毫秒
1.
随着能源危机和环境污染问题的日益突出,新能源的研发是当前人们密切关注的重要研究领域之一。除新能源的收集外,能量的存储也日益受到人们的重视。常见的储能器件有电池、燃料电池、超级电容器和电介质电容器等。其中电池和燃料电池的能量密度高,但功率密度低;传统电介质电容器的功率密度高,但储能密度低;超级电容器的功率密度和能量密度介于电池和传统电容器之间。电介质电容器具有介电常数高、介电损耗低、功率密度高、充/放电速度快、工作电压/电流大、可靠性好、温度稳定性好等优点,已经被应用于脉冲功率器件领域。双轴拉伸聚丙烯(BOPP)已经实现了商业化应用。但电介质电容器固有的储能密度较低,限制了其应用范围。如何提高电容器的储能密度成为亟待解决的一个关键问题,也是目前人们研究的重点。与块体材料相比,薄膜电容器的耐压强度高,因此其储能密度高。本文的关注点就是无机储能薄膜的研究现状及提高其储能密度的方法。目前已经对储能薄膜开展了大量的研究,其结构体系有很多,如钙钛矿结构、铋层状结构、焦绿石结构、单金属氧化物薄膜等。其中钙钛矿结构薄膜是研究最早、最多的一类。目前,用磁控溅射或激光脉冲沉积制备的无铅钙钛矿结构薄膜的储能密度达100 J/cm~3以上。然而,由于薄膜制备方法多、工艺复杂,会产生很多因素影响其性能,特别是储能密度。薄膜工艺的可重复性和性能的稳定性是非常重要的。综合文献资料可知,提高储能密度的方法主要有:(1)元素掺杂或多相复合形成固溶体,可以提高极化和耐压强度,从而提高储能密度,该方法是一种比较简单易行的常见方法;(2)制备工艺的改进也可以提高薄膜的储能密度,改进的方法有退火工艺、局域场工程、取向、应力、电极等方面的调控;(3)叠层结构等异质结构界面调控是近年来兴起的一种提高薄膜储能密度的方法,已取得明显效果。本文概述了评价电介质储能特性的主要参数,简要介绍了电介质的分类,归纳了钙钛矿结构、焦绿石结构、氧化物结构等几类储能薄膜的研究现状,分析总结了提高薄膜储能密度的方法,最后对无机储能薄膜的发展趋势进行了展望,以期对无机储能薄膜的研发提供一定的参考。 相似文献
2.
3.
4.
5.
6.
随着器件小型化与多功能化的蓬勃发展,柔性储能装置在电子电力系统中的地位日益突出,电介质电容器由于寿命长、功率密度高,深受人们青睐,但是低的储能密度阻碍其广泛应用.有机-无机复合材料将有机介质的柔韧性和高击穿场强与无机介质的高介电常数相结合,是柔性储能材料的一大关注焦点,特别是基于聚偏氟乙烯(PVDF)的有机-无机复合储能介质受到广泛关注.首先,就无机填料类型而言,PVDF基有机-无机复合介质中无机填料的种类有陶瓷粉体、半导体粉体与导体粉体.陶瓷粉体填料的介电常数高、损耗小,但是与PVDF的相容性差,一般需要通过表面改性来改善其与有机介质的相容性;半导体粉体与导体粉体作为PVDF的填料可以显著提升复合材料的介电常数,从而提升其储能密度,但是填料添加量略大容易形成导电通路致使介电储能材料制备失败.其次,就无机填料的形貌而言,同一种材料不同的形貌对复合材料的储能性能有不同影响.零维纳米颗粒在有机基质中易于形成均匀分散的体系,一般随纳米颗粒添加量的增加复合材料的储能密度有一极值,且填料颗粒尺寸减小更有利于电场均匀分布,从而可以进一步提高复合材料的击穿场强和储能密度;采用一维纳米纤维和二维纳米片填料有利于增强复合材料的极化、改变电场的击穿路径,从而增强复合材料的击穿强度,提高其储能密度.最后,采用层状结构设计对提高复合材料的储能密度和储能效率十分有效.单层结构的复合材料以牺牲其击穿强度来提高介电常数,储能密度的提升有限;双层、三层和多层结构将高介电常数的极化层和高击穿强度的绝缘层相堆叠,可同时实现高介电常数与高击穿强度,有效促进复合材料储能密度的提升.有机-无机复合储能材料的研究对解决柔性设备的储能问题十分重要,未来需要寻找更优的复合体系,降低成本,提高工艺可控性,开发适合大规模生产的工艺流程. 相似文献
7.
高储能密度玻璃陶瓷材料的研究进展 总被引:1,自引:0,他引:1
介绍了电介质材料储能密度的概念,综述了陶瓷及玻璃陶瓷用于储能介质材料的研究进展,重点分析了影响介质材料储能密度的若干因素,展望了玻璃陶瓷电容器在军事、混合动力汽车及生物医学上的应用前景,指出了今后高储能密度介质材料的发展方向。 相似文献
8.
9.
高介电常数的栅极电介质LaAlO3薄膜的性能研究 总被引:2,自引:0,他引:2
在室温下,采用射频磁控溅射法在Si衬底上制备了具有高介电常数的LaAlO3薄膜,这是一种新的栅极电介质材料.在高纯O2中经过15min 650℃的高温退火后LaAlO3薄膜仍然不晶化,这种热稳定性有利于减小薄膜的漏电流.本工作研究了LaAlO3薄膜的介电性能,其电容等效氧化物厚度为2.33nm,在外加偏压士1V处的漏电流很低,分别为3.73mA/cm2(+1V处)和5.32×10-4mA/cm2(-1V处),两者相差四个数量级.此结果表明,Pt/LaAlO3/Si结构具有良好的单向导电性能.C-V曲线的滞后电压VH=0.09V,界面态密度的值约为8.35×1011cm-2.研究结果表明,在今后的半导体器件的甚大规模集成(ULSI)中,具有高介电常数的LaAlO3薄膜将会是一种极有希望的栅极电介质材料. 相似文献
10.
11.
插层法制备聚合物基纳米复合材料研究进展 总被引:5,自引:0,他引:5
聚合物基纳米复合材料具有常规聚合物基复合材料所没有的结构、形态以及较常规聚合物基复合材料具有更优异的力学性能、耐热性能和气体液体阻隔性能等而显示出重要的科学意义和应用前景。本文综述插层法制备聚合物基纳米复合材料近几年的研究进展情况,总结了层状硅酸盐结构、插层剂选择、制备方法等问题。对制备过程进行了热力学和动力学分析,介绍了纳米复合材料表征方法,并对纳米复合材料的性能和应用进行了讨论。 相似文献
12.
13.
通过在有机基体内添加无机陶瓷颗粒形成二相复合材料是当前研究高储能密度的热点和难点,材料的静电储能特性由其内部电场分布决定。对于纯高聚物材料在均匀外电场环境中其内部电场分布均匀,但当填充无机颗粒形成复合材料时,材料局部电场会发生畸变,进而影响复合材料的介电性能。本文通过有限元方法系统研究了不同形状颗粒,包括球型、纤维状和圆片状颗粒及其空间分布的电响应特性,进而分析其对复合材料储能特性的影响。结果表明,颗粒形状及空间分布的不同均会产生不同的局部电场分布,对于球型颗粒其顶端和低端会出现明显的电场集中现象;对于纤维状颗粒,当其长径比较小时,其端部束缚电荷产生的电场畸变不能被忽略。最后,本文建立了不同形状颗粒填充复合材料三维有限元模型,计算结果表明,在相同填充浓度下,一维纤维状颗粒填充复合材料的介电常数最大,二维圆片状颗粒填充复合材料介电常数最小,而球型颗粒填充复合材料介于二者之间。本文对理解复合材料储能特性的微观机制具有重要的意义。 相似文献
14.
15.
综述了纤维增强热固性聚合物基复合材料(PMC)层间增韧的最新研究进展。热固性复合材料由于基体树脂高的交联密度而呈脆性,表现出低的冲击损伤阻抗和损伤容限特征。柔性聚合物层间增韧是改善聚合物基复合材料层间断裂韧性和抗冲击性的有效手段,且不会降低热固性树脂的热性能和高模量。目前有3种层间增韧方法:颗粒增韧、聚合物纤维增韧和薄膜增韧。讨论了3种方法的概念、实施方案、增韧机理及研究成果。最后重点阐述了创新性的复合材料“离位”增韧思想,介绍了具有全部自主知识产权的“离位”复合材料高性能化技术体系,包括预浸料和液态成型两大复合材料产品系列。 相似文献
16.
复合相变储能材料制备工艺对其浸渗率和相对密度的影响 总被引:2,自引:0,他引:2
本文探索了Na2SO4/SiO2无机盐/陶瓷基复合相变储能材料的自发熔融浸渗工艺制度.讨论了预制体制备工艺的四个主要影响因素:造孔剂含量、成型压力、烧成温度和颗粒粒度与复合相变储能材料的浸渗率和相对密度的关系,分析了熔融盐与预制体浸渗合成时,浸渗温度、浸渗时间以及浸渗方式对复合相变储能材料浸渗率和相对密度的影响.对复合相变储能材料的物相组成和显微结构进行分析,结果表明:制备工艺对复合储能材料的物相组成影响不大,Na2SO4与SiO2两相表现出较好的高温稳定性和相容性,且分布均匀. 相似文献
17.
18.
19.
20.
自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。 相似文献