首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of flavonoid derivatives inhibitors release through the inhibition of neuraminidase has been identified as a potential target for the treatment of H1N1 influenza disease. We have employed molecular dynamics simulation techniques to optimize the 2009 H1N1 influenza neuraminidase X-ray crystal structure. Molecular docking of the compounds revealed the possible binding mode. Our molecular dynamics simulations combined with the solvated interaction energies technique was applied to predict the docking models of the inhibitors in the binding pocket of the H1N1 influenza neuraminidase. In the simulations, the correlation of the predicted and experimental binding free energies of all 20 flavonoid derivatives inhibitors is satisfactory, as indicated by R(2) = 0.75.  相似文献   

2.
Novel candidates of 3-(4-(thiophen-2-yl)-pyridin/pyran/pyrimidin/pyrazol-2-yl)-1H-indole derivatives (2–12) were designed by pairing the pyridine/pyrane/pyrimidine/pyrazole heterocycles with indole and thiophene to investigate their potential activities as (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) inhibitors. The purpose of these derivatives’ modification is to create high-efficiency antioxidants, especially against ABTS, as a result of the efficiency of this set of key heterocycles in the inhibition of ROS. Herein, 2D QSAR modeling was performed to recommend the most promising members for further in vitro investigations. Furthermore, the pharmacological assay for antioxidant activity evaluation of the yielded indole-based heterocycles was tested against ABTS (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); by utilizing ascorbic acid as the standard. Candidate 10 showed higher antioxidant activity (IC50 = 28.23 μg/mL) than ascorbic acid itself which achieved (IC50 = 30.03 μg/mL). Moreover, molecular docking studies were performed for the newly designed and synthesized drug candidates to propose their mechanism of action as promising cytochrome c peroxidase inhibitors compared to ascorbic acid as a reference standard. Our findings could be promising in the medicinal chemistry scope for further optimization of the newly designed and synthesized compounds regarding the introduced structure-activity relationship study (SAR) in order to get a superior antioxidant lead compound in the near future.  相似文献   

3.
To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.  相似文献   

4.
In our research, we used nicotinic acid as a starting compound, which was subjected to a series of condensation reactions with appropriate aldehydes. As a result of these reactions, we were able to obtain a series of twelve acylhydrazones, two of which showed promising activity against Gram-positive bacteria (MIC = 1.95–15.62 µg/mL), especially against Staphylococcus epidermidis ATCC 12228 (MIC = 1.95 µg/mL). Moreover, the activity of compound 13 against the Staphylococcus aureus ATCC 43300 strain, i.e., the MRSA strain, was MIC = 7.81 µg/mL. Then, we subjected the entire series of acylhydrazones to a cyclization reaction in the acetic anhydride, thanks to which we were able to obtain twelve new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives. Obtained 1,3,4-oxadiazolines were also tested for antimicrobial activity. The results showed high activity of compound 25 with a 5-nitrofuran substituent, which was active against all tested strains. The most promising activity of this compound was found against Gram-positive bacteria, in particular against Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538 (MIC = 7.81 µg/mL) and ATCC 43300 MRSA strains (MIC = 15.62 µg/mL). Importantly, the best performing compounds did not show cytotoxicity against normal cell lines. It seems practical to use some of these compounds or their derivatives in the future in the prevention and treatment of infections caused by some pathogenic or opportunistic microorganisms.  相似文献   

5.
Inhibitors of the bacterial deacetylase LpxC are a promising class of novel antibiotics, being selectively active against Gram-negative bacteria. To improve the biological activity of reported C-furanosidic LpxC inhibitors, the stereochemistry at positions 3 and 4 of the tetrahydrofuran ring was varied. In chiral pool syntheses starting from d -gulono-γ-lactone and d -ribose, a series of (3S,4R)-configured dihydroxytetrahydrofuran derivatives was obtained, of which the (2S,5S)-configured hydroxamic acid 15 ((2S,3S,4R,5S)-N,3,4-trihydroxy-5-(4-{[4-(morpholinomethyl)phenyl]ethynyl}phenyl)tetrahydrofuran-2-carboxamide) was found to be the most potent LpxC inhibitor (Ki=0.4 μm ), exhibiting the highest antibacterial activity against E. coli BL21 (DE3) and the D22 strain. Additionally, molecular docking studies were performed to rationalize the obtained structure–activity relationships.  相似文献   

6.
Inducible Nitric Oxide Synthase (iNOS) has been involved in a variety of diseases, and thus it is interesting to discover and optimize new iNOS inhibitors. In previous studies, a series of benzimidazole-quinolinone derivatives with high inhibitory activity against human iNOS were discovered. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking and molecular dynamics (MD) simulation approaches were applied to investigate the functionalities of active molecular interaction between these active ligands and iNOS. A QSAR model with R2 of 0.9356, Q2 of 0.8373 and Pearson-R value of 0.9406 was constructed, which presents a good predictive ability in both internal and external validation. Furthermore, a combined analysis incorporating the obtained model and the MD results indicates: (1) compounds with the proper-size hydrophobic substituents at position 3 in ring-C (R3 substituent), hydrophilic substituents near the X6 of ring-D and hydrophilic or H-bond acceptor groups at position 2 in ring-B show enhanced biological activities; (2) Met368, Trp366, Gly365, Tyr367, Phe363, Pro344, Gln257, Val346, Asn364, Met349, Thr370, Glu371 and Tyr485 are key amino acids in the active pocket, and activities of iNOS inhibitors are consistent with their capability to alter the position of these important residues, especially Glu371 and Thr370. The results provide a set of useful guidelines for the rational design of novel iNOS inhibitors.  相似文献   

7.
To develop new alkaline phosphatase inhibitors (ALP), a series of pyrazolo-oxothiazolidine derivatives were synthesized and biologically assessed, and the results showed that all of the synthesized compounds significantly inhibited ALP. Specifically, compound 7g displayed the strongest inhibitory activity (IC50 = 0.045 ± 0.004 μM), which is 116-fold more active than monopotassium phosphate (IC50 = 5.242 ± 0.472 μM) as a standard reference. The most potent compound among the series (7g) was checked for its mode of binding with the enzyme and shown as non-competitively binding with the target enzyme. The antioxidant activity of these compounds was examined to investigate the radical scavenging effect. Moreover, the MTT assay method was performed to evaluate their toxic effects on the viability of MG-63 human osteosarcoma cells, and all compounds have no toxic effect on the cells at 4 μM. Computational research was also conducted to examine the binding affinity of the ligands with alkaline phosphatase, and the results revealed that all compounds showed good binding energy values within the active site of the target. Therefore, these novel pyrazolo-oxothiazolidine derivatives might be employed as promising pharmacophores for potent and selective alkaline phosphatase inhibitors.  相似文献   

8.
Target-based drug design, a high-efficiency strategy used to guide the development of novel pesticide candidates, has attracted widespread attention. Herein, various natural-derived ferulic acid derivatives incorporating substituted isopropanolamine moieties were designed to target the tobacco mosaic virus (TMV) helicase. Bioassays demonstrating the optimized A19, A20, A29, and A31 displayed excellent in vivo antiviral curative abilities, affording corresponding EC50 values of 251.1, 336.2, 347.1, and 385.5 μg/mL, which visibly surpassed those of commercial ribavirin (655.0 μg/mL). Moreover, configurational analysis shows that the R-forms of target compounds were more beneficial to aggrandize antiviral profiles. Mechanism studies indicate that R-A19 had a strong affinity (Kd = 5.4 μM) to the TMV helicase and inhibited its ability to hydrolyze ATP (50.61% at 200 μM). Meanwhile, A19 could down-regulate the expression of the TMV helicase gene in the host to attenuate viral replication. These results illustrate the excellent inhibitory activity of A19 towards the TMV helicase. Additionally, docking simulations uncovered that R-A19 formed more hydrogen bonds with the TMV helicase in the binding pocket. Recent studies have unambiguously manifested that these designed derivatives could be considered as promising potential helicase-based inhibitors for plant disease control.  相似文献   

9.
In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.  相似文献   

10.
Recent studies indicate that tubulin can be a host factor for vector-borne flaviviruses like dengue (DENV) and Zika (ZIKV), and inhibitors of tubulin polymerization such as colchicine have been demonstrated to decrease virus replication. However, toxicity limits the application of these compounds. Herein we report prodrugs based on combretastatin and colchicine derivatives that contain an ester cleavage site for human carboxylesterase, a highly abundant enzyme in monocytes and hepatocytes targeted by DENV. Relative to their parent compounds, the cytotoxicity of these prodrugs was reduced by several orders of magnitude. All synthesized prodrugs containing a leucine ester were hydrolyzed by the esterase in vitro. In contrast to previous reports, the phenylglycine esters were not cleaved by human carboxylesterase. The antiviral activity of combretastatin, colchicine, and selected prodrugs against DENV and ZIKV in cell culture was observed at low micromolar and sub-micromolar concentrations. In addition, docking studies were performed to understand the binding mode of the studied compounds to tubulin.  相似文献   

11.
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the pathogen responsible for the outbreak of a severe, rapidly developing pneumonia (Coronavirus disease 2019, COVID-19). The virus enzyme, called 3CLpro or main protease (Mpro), is essential for viral replication, making it a most promising target for antiviral drug development. Recently, we adopted the drug repurposing as appropriate strategy to give fast response to global COVID-19 epidemic, by demonstrating that the zonulin octapeptide inhibitor AT1001 (Larazotide acetate) binds Mpro catalytic domain. Thus, in the present study we tried to investigate the antiviral activity of AT1001, along with five derivatives, by cell-based assays. Our results provide with the identification of AT1001 peptide molecular framework for lead optimization step to develop new generations of antiviral agents of SARS-CoV-2 with an improved biological activity, expanding the chance for success in clinical trials.  相似文献   

12.
A molecular docking approach was employed to evaluate the binding affinity of six triterpenes, namely epifriedelanol, friedelin, α-amyrin, α-amyrin acetate, β-amyrin acetate, and bauerenyl acetate, towards the cannabinoid type 1 receptor (CB1). Molecular docking studies showed that friedelin, α-amyrin, and epifriedelanol had the strongest binding affinity towards CB1. Molecular dynamics simulation studies revealed that friedelin and α-amyrin engaged in stable non-bonding interactions by binding to a pocket close to the active site on the surface of the CB1 target protein. The studied triterpenes showed a good capacity to penetrate the blood–brain barrier. These results help to provide some evidence to justify, at least in part, the previously reported antinociceptive and sedative properties of Vernonia patula.  相似文献   

13.
In this study, a series of 4-[(quinolin-4-yl)amino]benzamide derivatives as the novel anti-influenza agents were designed and synthesized. Cytotoxicity assay, cytopathic effect assay and plaque inhibition assay were performed to evaluate the anti-influenza virus A/WSN/33 (H1N1) activity of the target compounds. The target compound G07 demonstrated significant anti-influenza virus A/WSN/33 (H1N1) activity both in cytopathic effect assay (EC50 = 11.38 ± 1.89 µM) and plaque inhibition assay (IC50 = 0.23 ± 0.15 µM). G07 also exhibited significant anti-influenza virus activities against other three different influenza virus strains A/PR/8 (H1N1), A/HK/68 (H3N2) and influenza B virus. According to the result of ribonucleoprotein reconstitution assay, G07 could interact well with ribonucleoprotein with an inhibition rate of 80.65% at 100 µM. Furthermore, G07 exhibited significant activity target PA−PB1 subunit of RNA polymerase according to the PA−PB1 inhibitory activity prediction by the best pharmacophore Hypo1. In addition, G07 was well drug-likeness based on the results of Lipinski’s rule and ADMET prediction. All the results proved that 4-[(quinolin-4-yl)amino]benzamide derivatives could generate potential candidates in discovery of anti-influenza virus agents.  相似文献   

14.
Based on the strategy of the “tail approach”, 15 novel saccharide-modified sulfonamides were designed and synthesised. The novel compounds were evaluated as inhibitors of three human carbonic anhydrase (CA) isoforms, namely cytoplasmic CA II, transmembrane CA IX, and XII. Most of these compounds showed good activity against CAs and high topological polar surface area (TPSA) values, which had a positive effect on the selective inhibition of transmembrane isoforms CA IX and XII. In the in vitro activity studies, compounds 16a, 16b, and 16e reduced the viability of HT-29 and MDA-MB-231 cells with a high expression of CA IX under hypoxia. The inhibitory activity of compound 16e on the human osteosarcoma cell line MG-63 with a high expression of CA IX and XII was better than that of AZM. Moreover, high concentrations of compounds 16a and 16b reversed the acidification of the tumour microenvironment. In addition, compound 16a had a certain inhibitory effect on the migration of MDA-MB-231 cells. All the above results indicate that the saccharide-modified sulfonamide has further research value for the development of CA IX inhibitors.  相似文献   

15.
Some 2,4-disubstituted quinazolines were synthesized and studied as multidrug resistance (MDR) reversers. The new derivatives carried the quinazoline-4-amine scaffold found in modulators of the ABC transporters involved in MDR, as the TKIs gefitinib and erlotinib. Their behaviour on the three ABC transporters, P-gp, MRP1 and BCRP, was investigated. Almost all compounds inhibited the P-gp activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values in the nanomolar range ( 1 d , 1 e , 2 a , 2 c , 2 e ). Some compounds were active also towards MRP1 and/or BCRP. Docking results obtained by in silico studies on the P-gp crystal structure highlighted common features for the most potent compounds. The P-gp selective compound 1 e was able to increase the doxorubicin uptake in HT29/DX cells and to restore its antineoplastic activity in resistant cancer cells in the same extent of sensitive cells. Compound 2 a displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP.  相似文献   

16.
Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q(2) = 0.605, r(2) (pred) = 0.826), (q(2) = 0.52, r(2) (pred) = 0.798) and (q(2) = 0.582, r(2) (pred) = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors.  相似文献   

17.
A series of novel N‐substituted sophocarpinic acid derivatives was designed, synthesized, and evaluated for their anti‐enteroviral activities against coxsackievirus type B3 (CVB3) and coxsackievirus type B6 (CVB6) in Vero cells. Structure–activity relationship analysis revealed that the introduction of a benzenesulfonyl moiety on the 12‐nitrogen atom in (E)‐β,γ‐sophocarpinic acid might significantly enhance anti‐CVB3 activity. Among the derivatives, (E)‐12‐N‐(m‐cyanobenzenesulfonyl)‐β,γ‐sophocarpinic acid ( 11 m ), possessing a meta‐cyanobenzenesulfonyl group, exhibited potent activity against CVB3 with a selectivity index (SI) of 107. Furthermore, compound 11 m also showed a good oral pharmacokinetic profile, with an AUC value of 7.29 μM h?1 in rats, and good safety through the oral route in mice, with an LD50 value of >1000 mg kg?1; these values suggest a druggable characteristic. Therefore, compound 11 m was selected for further investigation as a promising CVB3 inhibitor. We consider (E)‐β,γ‐N‐(benzenesulfonyl)sophocarpinic acids to be a novel class of anti‐CVB3 agents.  相似文献   

18.
In the present paper, new pyrimidine derivatives were designed, synthesized and analyzed in terms of their anticancer properties. The tested compounds were evaluated in vitro for their antitumor activity. The cytotoxic effect on normal human dermal fibroblasts (NHDF) was also determined. According to the results, all the tested compounds exhibited inhibitory activity on the proliferation of all lines of cancer cells (colon adenocarcinoma (LoVo), resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF-7), lung cancer (A549), cervical cancer (HeLa), human leukemic lymphoblasts (CCRF-CEM) and human monocytic (THP-1)). In particular, their feature stronger influence on the activity of P-glycoprotein of cell cultures resistant to doxorubicin than doxorubicin. Tested compounds have more lipophilic character than doxorubicin, which determines their affinity for the molecular target and passive transport through biological membranes. Moreover, the inhibitory potential against topoisomerase II and DNA intercalating properties of synthesized compounds were analyzed via molecular docking.  相似文献   

19.
Chemotherapy represents the most applied approach to cancer treatment. Owing to the frequent onset of chemoresistance and tumor relapses, there is an urgent need to discover novel and more effective anticancer drugs. In the search for therapeutic alternatives to treat the cancer disease, a series of hybrid pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered with hydrazide-hydrazones, 5a–h, was synthesized from condensation reaction of pyrazolopyrimidinone-hydrazide 4 with a series of arylaldehydes in ethanol, in acid catalysis. In vitro assessment of antiproliferative effects against MCF-7 breast cancer cells, unveiled that 5a, 5e, 5g, and 5h were the most effective compounds of the series and exerted their cytotoxic activity through apoptosis induction and G0/G1 phase cell-cycle arrest. To explore their mechanism at a molecular level, 5a, 5e, 5g, and 5h were evaluated for their binding interactions with two well-known anticancer targets, namely the epidermal growth factor receptor (EGFR) and the G-quadruplex DNA structures. Molecular docking simulations highlighted high binding affinity of 5a, 5e, 5g, and 5h towards EGFR. Circular dichroism (CD) experiments suggested 5a as a stabilizer agent of the G-quadruplex from the Kirsten ras (KRAS) oncogene promoter. In the light of these findings, we propose the pyrazolo-pyrimidinone scaffold bearing a hydrazide-hydrazone moiety as a lead skeleton for designing novel anticancer compounds.  相似文献   

20.
Pyrazolines derivatives are nitrogen-containing heterocyclic compound, which exhibit the broad spectrum of biological activities such as antibacterial, antifungal, antiprotozoal, and anti-inflammatory. The optimized geometry, frequency, and intensity of vibrational bands of these compounds are obtained by the density function theory (DFT) using 6–31+G(d,p) basis set. The scaled harmonic vibrational frequencies have been compared with experimental Fourier transform infrared spectroscopy (FTIR) values and found to be in good agreement. The electronic properties of these molecules are discussed with the help of highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and molecular electrostatic potential (MESP) surfaces, and a number of electronic and thermodynamic parameters are calculated, which are closely related to their chemical reactivity and reaction path. We also notice that pyrazoline derivatives show biological activity for preventing dyskinesia. This study may provide a further investigation on pyrazolines derivatives for pharmacological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号