首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对基于传统Census变换的立体匹配方法精度不高的问题, 提出一种基于坐标模板Census变换的立体匹配方法。该方法首先设计一个坐标为高斯分布的变换模板指导Census变换; 其次, 以Census变换结果之间的Hamming距离作为匹配代价求取初始视差, 同时使用SSE4. 2指令提高Hamming距离计算效率; 再次, 使用非局部代价聚合方法优化视差结果; 最后, 获得精度较高的视差图像。实验结果表明, 该算法具有较好的匹配精度和较高的匹配效率。  相似文献   

2.
深度图像中视差跳变的像素点匹配一直是立体匹配的挑战性问题之一.基于引导滤波的局部立体匹配算法通过考虑匹配图像内容,可以在保持深度图像边缘的同时提高匹配精度、加快匹配速度,但引导滤波会产生图像光晕,在图像边缘区域也会引入大量的噪声.为此,将引导滤波的岭回归扩展到多元回归,提出一种基于多元线性回归的立体匹配算法.首先将引导滤波中只含图像像素值这一单变量的回归方程扩展为基于图像像素值和梯度信息等多个变量的多元回归方程,对初始代价值进行滤波聚合,并与单独进行引导滤波的匹配代价聚合值进行加权组合提高图像边缘的匹配效果;然后根据代价聚合最小值与次小值之间的相互关系定义了视差选择可信度,解决了视差选择时的歧义问题.在Middlebury测试平台进行了实验的结果表明,文中算法有效地提高深度图像中视差跳变像素点的匹配精度,降低了匹配噪声;与最新的高性能立体匹配算法相比,该算法可以以较小的计算复杂度获得高质量的视差图.  相似文献   

3.
黄彬  胡立坤  张宇 《计算机工程》2021,47(5):189-196
针对传统Census算法对噪声敏感且在弱纹理区域匹配精度低的不足,提出一种基于自适应权重的改进算法。在代价计算阶段,通过空间相似度加权计算得到参考像素值,设定阈值限定参考值与中心点像素的差异,使算法能够判断中心点是否发生突变并自适应选择中心参考像素值。在代价聚合阶段,引入多尺度聚合策略,将引导滤波作为代价聚合核函数,加入正则化约束保持代价聚合时尺度间的一致性。在视差计算阶段,通过胜者通吃法得到初始视差图。在视差优化阶段,对初始视差图做误匹配点检测及左右一致性检测,并对遮挡区域进行像素填充得到最终的视差图。基于Middlebury标准图的实验结果表明,该算法平均误匹配率为5.81%,对比于传统Census算法抗干扰性提升显著,并能在平均误匹配率表现上达到主流经典算法的性能水准。  相似文献   

4.
针对当前立体匹配算法存在的匹配准确率低,难以达到实用的高精度水平的问题,提出了一种基于改良的Census变换与色彩信息和梯度测度相结合的多特性立体匹配算法,实现高精度的双目立体匹配。算法首先在初始代价匹配阶段,将改进的Census变换、色彩和梯度测度赋权求和得出可靠的初始匹配代价;在聚合阶段,采取高效快捷的最小生成树聚合,获得匹配代价矩阵;最后根据胜者为王法则得到初始视差图,并引入左右一致性检测等策略优化视差图,获得高精度的视差图,实验阶段对源自Middlebury上的标准测试图进行测试验证,实验结果表明,经本文算法处理得到的15组测试数据集的视差图在非遮挡区域的平均误匹配率为6.81%,算法实时响应性优良。  相似文献   

5.
针对局部立体匹配中存在的弱纹理区域匹配精度较低、斜面等区域容易产生视差阶梯效应等问题,文中提出基于分割导向滤波的视差优化算法,以获得亚像素级高精度匹配视差.首先依据左右一致性准则对立体匹配的初始视差进行误匹配检验及均值滤波修正.然后在修正视差图上确定区域分割导向图,对修正视差进行区域导向滤波优化,获得亚像素级高精度的视差结果.实验表明,文中算法能有效改善斜面等区域的视差不平滑现象,降低初始视差的误匹配率,获得较高精度的稠密视差结果.  相似文献   

6.
针对立体匹配算法中匹配精度不高的问题,提出一种基于树形滤波的立体匹配算法.利用像素边缘信息自适应改变Census变换窗口,融合颜色、边缘和改进后的Census信息作为匹配代价,对图像进行均值分割,以聚类区域计算树边权重,建立最小生成树,利用树形滤波器进行代价聚合,使用左右一致性检测细化视差,得到精确视差图.实验结果表明,该算法具有更优的匹配精度且生成的视差图具有良好的边缘保持特性,能够较好适应各种复杂场景.  相似文献   

7.
曹林  于威威 《计算机科学》2021,48(z2):314-318
针对传统双目立体匹配算法采用固定窗口导致弱纹理区域匹配精度较低的问题,提出了一种基于图像分割的自适应窗口立体匹配算法.首先,采用Mean-shift算法对图像进行分割,之后对分割图像进行局部子区灰度标准差统计,在此基础上提出了一种根据纹理丰富程度进行窗口大小自适应设定的算子.基于自适应窗口大小设定,组合使用Census变换和梯度值计算匹配代价,并分别通过自适应权重代价聚合及"胜者为王"策略进行初始视差计算,最后利用左右视差一致性原则和加权中值滤波得到稠密视差图.采用提出的自适应窗口匹配算法与固定窗口匹配算法对Middlebury数据集上的标准图片进行匹配实验,实验结果表明,所提算法的平均匹配错误率为2.04%,相比对比算法,所提方法的匹配错误率分别降低了4.5%和7.9%.  相似文献   

8.
针对局部立体匹配算法在边缘处容易出现误匹配的问题,本文提出了一种结合权值传播进行代价聚合的局部立体匹配方法。首先采用基于颜色梯度的绝对差及Census方法构造了匹配代价函数;然后,引入传播滤波平滑匹配代价的同时保持视差空间图像边缘,与其他局部滤波器相比,该滤波器利用可传播的权值思想,不受传统局部算法窗口大小的影响;最后,通过左右一致性检查和无效视差值填充获得最终视差图。实验表明,该方法在Middlebury Stereo数据集上可获得精确结果,与Middlebury测试平台上的IGF、TSGO和Dog-Guided算法相比平均误差最低。  相似文献   

9.
作为双目三维重建中的关键步骤,双目立体匹配算法完成了从平面视觉到立体视觉的转化.但如何平衡双目立体匹配算法的运行速度和精度仍然是一个棘手的问题.本文针对现有的局部立体匹配算法在弱纹理、深度不连续等特定区域匹配精度低的问题,并同时考虑到算法实时性,提出了一种改进的跨多尺度引导滤波的立体匹配算法.首先融合AD和Census变换两种代价计算方法,然后采用基于跨尺度的引导滤波进行代价聚合,在进行视差计算时通过制定一个判断准则判断图像中每一个像素点的最小聚合代价对应的视差值是否可靠,当判断对应的视差值不可靠时,对像素点构建基于梯度相似性的自适应窗口,并基于自适应窗口修正该像素点对应的视差值.最后通过视差精化得到最终的视差图.在Middlebury测试平台上对标准立体图像对的实验结果表明,与传统基于引导滤波器的立体匹配算法相比具有更高的精度.  相似文献   

10.
利用无人机双目图像实现线目标的测量对输电线路巡检具有重要的意义。为提高无人机双目图像下线目标的测量精度,改进Census立体匹配算法,在代价聚合过程中,首先对聚合窗口中的初始匹配代价进行异常筛选,然后计算聚合代价值进而生成视差图,实验证明改进立体匹配算法,提高图像立体匹配精度,且平均误匹配率为5.79%;在线目标测量方面,针对线目标视差图存在的缺陷,提出一种基于目标识别的线目标视差图优化算法,该算法依据目标识别获取线目标视差图,然后根据四个原则进行优化处理,最后将优化后的线目标视差图用于测量,实验证明采用优化后的线目标视差图测量得到结果要优于直接采用视差图得到测量结果。  相似文献   

11.
目的 立体匹配是计算机双目视觉的重要研究方向,主要分为全局匹配算法与局部匹配算法两类。传统的局部立体匹配算法计算复杂度低,可以满足实时性的需要,但是未能充分利用图像的边缘纹理信息,因此在非遮挡、视差不连续区域的匹配精度欠佳。为此,提出了融合边缘保持与改进代价聚合的立体匹配。方法 首先利用图像的边缘空间信息构建权重矩阵,与灰度差绝对值和梯度代价进行加权融合,形成新的代价计算方式,同时将边缘区域像素点的权重信息与引导滤波的正则化项相结合,并在多分辨率尺度的框架下进行代价聚合。所得结果经过视差计算,得到初始视差图,再通过左右一致性检测、加权中值滤波等视差优化步骤获得最终的视差图。结果 在Middlebury立体匹配平台上进行实验,结果表明,融合边缘权重信息对边缘处像素点的代价量进行了更加有效地区分,能够提升算法在各区域的匹配精度。其中,未加入视差优化步骤的21组扩展图像对的平均误匹配率较改进前减少3.48%,峰值信噪比提升3.57 dB,在标准4幅图中venus上经过视差优化后非遮挡区域的误匹配率仅为0.18%。结论 融合边缘保持的多尺度立体匹配算法有效提升了图像在边缘纹理处的匹配精度,进一步降低了非遮挡区域与视差不连续区域的误匹配率。  相似文献   

12.
针对局部立体匹配在光照失真和弱纹理区域匹配精度低的问题,提出了一种多特征融合的代价计算和自适应十字窗口聚合的立体匹配算法。引入HSV颜色空间分量,结合改进后的Census变换和梯度信息作为匹配代价计算方法,排除了视差边界异常值的影响,增强了算法对光照失真的稳健性;提出了基于梯度信息和可变颜色阈值的自适应窗口代价聚合方法,提高了在弱纹理区域的匹配精度;通过视差计算和多步骤的视差精细得到了最终的视差结果。实验结果表明,所提算法较AD-Census算法在无光照失真条件下误匹配减少了3.24%,能有效解决视差边界和弱纹理区域错误匹配的问题,对光照失真稳健性好且能有效抑制噪声干扰。  相似文献   

13.
针对目前许多局部双目立体匹配方法在缺乏纹理区域、遮挡区域、深度不连续区域匹配精度低的问题,提出了基于多特征表示和超像素优化的立体匹配算法。通过在代价计算步骤中加入边缘信息特征,与图像局部信息代价相融合,增加了在视差计算时边缘区域的辨识度;在代价聚合步骤,基于超像素分割形成的超像素区域,利用米字骨架自适应搜索,得到聚合区域,对初始代价进行聚合;在视差精化步骤利用超像素分割信息,对匹配错误视差进行修正,提高匹配精度。基于Middlebury立体视觉数据集测试平台,与自适应权重AD-Census、FA等方法得出的视差图进行比较,该算法在深度不连续区域和缺乏纹理区域的匹配效果显著改善,提高了立体匹配精度。  相似文献   

14.
针对传统Census变换在视差不连续区域和噪声干扰情况下误匹配率较高的情况,提出了一种利用邻域相关信息的改进Census变换立体匹配算法。根据邻域像素的相关信息,将传统的Census变换中像素与邻域像素的差异应用2位信息表示,使变换后的图像在视差不连续区域的信息表示更为丰富,同时减少噪声对匹配质量的影响。通过并行化自适应匹配代价聚合、亚像素插值、左右一致性约束、遮挡区插值,最终得到了稠密视差图。经Middlebury立体图片测试表明,该算法结构简单,复杂度低,具有较高的鲁棒性,有效地提高了匹配精度。  相似文献   

15.
针对立体匹配算法中,census变换在弱纹理区域具有较好效果,但忽略了图像的灰度信息,造成在重复纹理区域匹配效果不理想,提出了一种改进的census变换。在初始匹配代价阶段,设计了一种在census变换的基础上融合互信息和梯度信息的相似性测度算法。在代价聚合阶段,采用自适应权重引导滤波聚合策略。最后,通过视差计算、视差优化得到最终的视差图。在VS2015软件平台上对Middlebury网站上提供的标准测试图进行实验,实验结果表明,所提算法能够得到较为准确的视差图,平均误匹配率为5.29%,可以满足三维重构的需要。  相似文献   

16.
《机器人》2016,(1)
针对立体匹配中匹配代价和支持窗口难以选择的问题,提出一种将多种相似性测度相结合的局部立体匹配算法.首先,构造匹配代价,结合图像的Census变换、WLD(Weber局部描述符)特征、图像色彩信息以及图像梯度信息作为匹配代价;然后,使用引导滤波器对匹配代价进行聚合;最后,针对WTA(赢者全取)策略引入的视差选择歧义问题和左右一致性检测(LRC)引入的水平条纹问题,提出了一种基于可信度和加权滤波的视差修正算法.利用Middlebury测试平台提供的标准测试图像对本文算法进行测试,其平均错误匹配率为5.30%,与Fast Bilateral算法等一些公认的性能优异算法相比,本文算法提高了匹配准确率.  相似文献   

17.
无人机自主导航是无人机发展的必然趋势,立体视觉技术作为一种优秀的环境信息测量技术能够为无人机自主导航提供关键信息.但是,导航图像存在幅度失真,现有立体匹配方法的匹配精度较低,针对Census变换舍弃了图像像素色彩信息而造成的误匹配问题,本文提出了一种Census变换和图像色彩信息相结合的联合匹配算法,并经过理论分析提出了正交积分的方法以提高算法的实时性.首先,将Census变换和图像色彩信息联合,构造初始匹配代价;然后,采用改进的自适应窗口作为代价累积窗口,并使用正交积分思想提高累积速度;最后,经过视差提精,获得最终的视差图.实验结果表明:本文算法对幅度失真图像的匹配误差比单独使用Census变换提高了40%~50%,算法的运算时间提速了3~12倍,与Census变换和图像灰度单独作为匹配代价时相比,该方法具有更高的匹配精度,对幅度失真有很强的鲁棒性,能够较好地应用于无人机自主导航场景中.  相似文献   

18.
针对传统立体匹配算法无法同时为图像边缘和低纹理区域提供一个合适大小的聚合窗口而导致匹配精度较低的难题,提出一种结合高斯混合模型及最小生成树结构的立体匹配算法。通过图像初始视差、像素颜色及距离信息将图像分为初始若干区域及待分割候选像素;基于高斯混合模型并行迭代更新各区域参数,得到最终的分割;在各分割上建立最小生成树计算聚合值求取视差;通过邻域内的有效视差修正误匹配点,获取精度较高的稠密视差图。与其他算法相比,该算法能有效降低误匹配率,尤其在深度不连续区域的匹配效果显著改善。  相似文献   

19.
《传感器与微系统》2019,(6):144-147
针对现有非局部立体匹配算法在不同纹理图像下因选取固定参数而导致整体误匹配率偏高的问题,提出一种自适应参数的非局部立体匹配算法。对颜色差和水平及垂直方向梯度代价进行归一化处理并加权融合,通过对融合后代价作对数变换,提高了单像素匹配代价在低纹理区域表现;在色度,饱和度,纯度(HSV)颜色空间上,计算参考图的平均色度差,自适应调节代价聚合参数;经过视差选择获得视差图。实验结果表明:所提算法在Middlebury测试平台对31组立体图像对处理后的平均误差为7. 86%。在低纹理区域误匹配率进一步降低,具有更好的泛化性。  相似文献   

20.
本文分析了当前主流的几类立体匹配算法,并通过对综合实时性与重构效果两方面内容的比较,得出半全局立体匹配算法的应用性更强。本文针对半全局匹配算法改进与优化,在代价计算部分将CIELAB色彩空间下的绝对灰度差与Census算法再结合梯度匹配计算方法作为代价计算函数,在代价聚合方面采用了引导滤波算法,并引入了多尺度聚合法,在不同尺度下分别进行代价计算,有效提高算法鲁棒性,使低纹理区域的块效应消除,图像边缘的匹配效果改善,误匹配率下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号