共查询到20条相似文献,搜索用时 0 毫秒
1.
现有的YOLOv5模型无法精确检测出进入复杂施工现场内的人员佩戴安全帽问题,本文提出了一种基于YOLOv5的安全帽检测算法。模型的具体改进方法为:在主干网络中新增了一个小目标层P2和3-D注意力机制SimAM,提升算法的特征提取能力便于能够更容易检测出小目标;将边框损失函数CIoU_Loss改为SIo U_Loss,以提升对小目标检测的训练速度与精度,从而得到一种新的安全帽佩戴检测模型。实验结果显示,修改后的YOLOv5s算法大大提高了复杂工程现场安全帽检测的准确率,较原有的算法提高了1.4个百分点,mAP值达到了95.5%。 相似文献
2.
对于血液中红细胞、白细胞、血小板等成分的观察和计数是临床医学诊断的重要依据.血细胞的异常意味着可能存在凝血异常、感染、炎症等与血液相关的问题.人工检测血细胞不仅耗费人力,且容易出现误检、漏检的情况.因此,针对上述情况,提出一种新颖的血细胞检测算法—YOLOv5-CBF.该算法在YOLOv5框架的基础上,通过在主干网络中加入坐标注意力(coordinate attention, CA)机制,提高检测精度;将颈部网络中的FPN+PAN结构中改为结合了跨尺度特征融合方法 (bidirectional feature pyramid network, BiFPN)思想的特征融合结构,使目标多尺度特征有效融合;在三尺度检测的基础上增加了一个小目标检测层,提高对数据集中小目标血小板的识别精度.通过在数据集BCCD上进行的大量的实验结果表明:与传统的YOLOv5算法相比较,该算法在3类血细胞检测的平均精度提升2.7%,试验效果良好,该算法对血细胞检测具有很高的实用性. 相似文献
3.
针对X光图像违禁品检测中的复杂背景、正负类别不平衡和漏检等问题,提出一种基于YOLOv5的X光违禁品检测算法。该算法通过在YOLOv5s骨干网络中引入Swin Transformer模块,利用局部自注意力与Shifted Window机制提升模型对X光图像全局特征的提取能力,并且在主干网络后增加空间注意力机制与通道注意力机制,以提升算法对违禁品关键特征的提取能力。引入一种自适应空间特征融合结构,缓解特征金字塔中不同层级特征图之间冲突对模型梯度的干扰。引入Focal Loss函数用于改进YOLOv5s的背景预测损失函数和分类损失函数,提升算法在正负样本与难易样本失衡情况下的检测能力。该算法在公开数据集SIXray100上的平均检测精度达到57.4%,相比YOLOv5s提高了4.5个百分点;在SIXray正样本数据集上的平均检测精度达到90.4%,相比YOLOv5s提高了2.4个百分点。实验结果表明,改进后的算法相比原始YOLOv5s算法检测精度有较大提升,证明了算法的有效性。 相似文献
4.
针对现有安全帽佩戴检测干扰性强、检测精度低等问题,提出一种基于改进YOLOv5的安全帽检测新算法。首先,针对安全帽尺寸不一的问题,使用K-Means++算法重新设计先验框尺寸并将其匹配到相应的特征层;其次,在特征提取网络中引入多光谱通道注意力模块,使网络能够自主学习每个通道的权重,增强特征间的信息传播,从而加强网络对前景和背景的辨别能力;最后,在训练迭代过程中随机输入不同尺寸的图像,以此增强算法的泛化能力。实验结果表明,在自制安全帽佩戴检测数据集上,所提算法的均值平均精度(mAP)达到96.0%,而对佩戴安全帽的工人的平均精度(AP)达到96.7%,对未佩戴安全帽的工人的AP达到95.2%,相较于YOLOv5算法,该算法对佩戴安全帽的平均检测准确率提升了3.4个百分点,满足施工场景下安全帽佩戴检测的准确率要求。 相似文献
5.
针对当前水利大坝主要依靠人工现场巡视,运营成本高且效率低的问题,提出一种基于YOLOv5的改进检测算法。首先,采用改进的多尺度的视觉Transformer结构改进主干网络,并利用多尺度Transformer结构关联的多尺度全局信息和卷积神经网络(CNN)提取的局部信息来构建聚合特征,从而充分利用多尺度的语义信息和位置信息来提高网络的特征提取能力。然后,在网络的每个特征检测层前加入同位注意力机制,以在图像的高度和宽度方向分别进行特征编码,再用编码后的特征构建特征图上像素的长距离关联,从而增强网络在复杂环境中的目标定位能力。接着,改进了网络正负训练样本的采样算法,通过构建先验框与真实框的平均契合度和差异度筛选样本来辅助候选正样本与自身形状相近的先验框产生响应,以帮助网络更快、更好地收敛,从而提升网络的整体性能和网络泛化性。最后,针对应用需求对网络进行了轻量化,并通过对网络结构剪枝和结构重参数化优化网络结构。实验结果表明:在当前采用的大坝病害数据上,对比原始YOLOv5s算法,改进后的网络mAP@0.5提升了10.5个百分点,mAP@0.5:0.95提高了17.3个百分点;轻量化后的网络对比... 相似文献
6.
现有瓷砖表面缺陷检测存在识别微小目标缺陷能力不足、检测速度有待提升的问题, 为此本文提出了基于改进YOLOv5的瓷砖表面缺陷检测方法. 首先, 由于瓷砖表面缺陷尺寸偏小的特性, 对比分析YOLOv5s的3个目标检测头分支的检测能力, 发现删除大目标检测头, 只保留中目标检测头和小目标检测头的模型检测效果最佳. 其次, 为了进一步实现模型轻量化, 使用ghost convolution和C3Ghost模块替换YOLOv5s在Backbone网络中的普通卷积和C3模块, 减少模型参数量和计算量. 最后, 在YOLOv5s的Backbone和Neck网络末端添加coordinate attention注意力机制模块, 解决原模型无注意力偏好的问题. 该方法在天池瓷砖瑕疵检测数据集上进行实验, 实验结果表明: 改进后的检测模型的平均精度均值达66%, 相比于原YOLOv5s模型提升了1.8%; 且模型大小只有10.14 MB, 参数量相比于原模型减少了48.7%, 计算量减少了38.7%. 相似文献
7.
针对路面病害检测中由于病害形态多样、种类繁多以及背景灰度值相似造成噪声干扰导致识别与分类精度不高的问题,采用卷积神经网络YOLOv5为主干框架,提出一种基于改进YOLOv5的路面病害检测模型YOLOv5l-CBF。引入坐标注意力机制,调整网络的注意力权重使模型对病害纹理特征更加关注,并在主干网络的残差结构中引入Transformer构建BotNet网络结构,在减少参数量的同时提高对病害图像中全局依赖关系的捕捉能力。同时,在颈部网络中构建双向加权特征金字塔网络,学习每个特征层的重要性分布权重,并对提取到的病害特征进行双向交叉尺度连接和加权融合。在真实路面病害数据集上的实验结果表明:与YOLOv5l模型相比,YOLOv5l-CBF模型精度与召回率分别提升7.4和8.7个百分点,mAP达到90.8%,在对多种病害的检测与分类上具有显著的性能优势。 相似文献
8.
针对烟雾发生场景复杂,小目标烟雾检测困难的问题,提出一种改进的YOLOv5烟雾检测模型。为了增加模型对目标烟雾的检测精度,结合加权双向特征金字塔网络(BiFPN)结构对特征融合过程进行修改,并在通道和空间维度上加入混合注意力机制对融合特征图的权重进行重新赋值,在增强烟雾目标特征的同时抑制无关区域特征,使烟雾特征表达具有更高的鲁棒性;使用α-CIOU替换G-IOU作为预测框回归损失,提升预测框的预测精度;剔除分类损失以降低模型的复杂度。实验结果表明,改进后的YOLOv5烟雾检测模型相比于YOLOv5模型检测精度更高,其准确率达到99.35%,召回率达到99.18%,并且检测速度可达46 frame/s,该算法能有效提取烟雾的整体特征,对于复杂场景下的烟雾以及小目标烟雾检测任务更为适用。 相似文献
9.
针对水下图像模糊、颜色失真,水下场景环境复杂、目标特征提取能力有限等导致的水下鱼类目标检测精确度低的问题,提出一种基于YOLOv5的改进水下鱼类目标检测算法.首先,针对水下图像模糊、颜色失真的问题,引入水下暗通道优先(underwater dark channel prior, UDCP)算法对图像进行预处理,有助于在不同环境下正确识别目标;然后,针对水下场景复杂、目标特征提取能力有限问题,在YOLOv5网络中引入高效的相关性通道(efficient channel attention, ECA),增强对目标的特征提取能力;最后,对损失函数进行改进,提高目标检测框的准确度.通过实验证明改进后的YOLOv5在水下鱼类目标检测中精确度比原始的YOLOv5提高了2.95%,平均检测精度(mAP@0.5:0.95)提高了5.52%. 相似文献
10.
为了实现准确、高效的麦穗计数,提出一种基于改进YOLOv5模型的麦穗检测算法。在YOLOv5的特征增强部分添加卷积块注意力模块,提高模型对特征的表达能力,使其更加关注待检测目标的位置信息。此外,结合GhostNet模块,达到有效降低模型的参数量并提升算法性能的效果。改进后的算法在Global Wheat2020数据集上能达到92.3%的检测精度,相对于原来的YOLOv5s在精度上提高了1.3个百分点,同时检测速度也获得17.6%的提升,在麦穗检测中表现出了更优秀的性能。 相似文献
11.
针对中药饮片检测算法的模型参数量多,计算量较大等问题,提出一种改进的YOLOv5算法,改进后算法的特点主要是轻量化,可以在保持较高的平均精度下,大大降低参数量和计算量。在YOLOv5算法的主干网络基础上,设计了轻量级的GhostBottleneck模块;针对中药饮片中的小目标检测问题,在模型结构中加入了注意力机制,可以提高小目标的检测能力;将原有的卷积层替换为深度可分离卷积,降低网络的模型参数。经过在107种常见中药饮片的数据集上训练的实验结果表明,改进后算法的mAP@0.5可以达到98.37%,比原YOLOv5算法提高了2.93%,既保持了对中药饮片识别的较高精度,同时计算量又比YOLOv5算法降低了53.45%,改进后算法的模型大小仅为6.61 MB,大大降低了硬件设备的计算成本。 相似文献
12.
近年来,随着我国制造业的快速发展,铝材的需求量日益增长。然而,铝材在生产过程中会出现不同类型的缺陷,这些缺陷影响铝材的质量、美观度和使用寿命。为实现快速、准确地识别铝片表面缺陷,基于YOLOv5网络提出了一种改进的铝片表面缺陷检测方法。为了提高检测模型的特征提取和特征融合能力,引入注意力机制CBAM模块,协助模型关注和提取更有用的特征信息。在回归损失方面,采用Alpha-IoU函数来替代原来的CIOU损失函数,降低预测框的回归损失,提升定位精度。通过实验验证,该方法能够有效识别铝片表面的缺陷类型和位置,具有较高的实用价值。 相似文献
13.
针对目前应用到织物疵点检测的网络模型中存在的两阶段算法检测速度慢、一阶段算法检测精度低的问题,提出了一种改进YOLOv5的织物疵点检测算法。针对织物疵点大小不一的问题,对K-mean算法的聚类距离标准进行修改,重新计算先验框大小;对网络Neck层标准卷积(standard convolution,SC)进行改进,将深度分离卷积(depth separation convolution,DSC)与标准卷积结合,减少网络层参数量,同时保持网络的特征提取能力;在特征融合阶段引入坐标注意力机制(coordinate attention,CA),使网络能够捕捉各通道之间联系的同时保留目标的精确定位信息,加强网络的特征提取和定位能力;使用加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中的方法,对特征金字塔模块进行修改,实现简单快速的多尺度特征融合。在数据集上进行训练,结果表明,改进的YOLOv5模型的mAP值可达到97.4%,相比于原网络精度提高了2.8个百分点,满足了织物疵点检测的要求。 相似文献
14.
针对遥感影像目标检测中复杂背景的干扰,小目标检测效果差等问题,提出一种改进YOLOv5(you only look once v5)的遥感影像目标检测模型。针对卷积神经网络下采样导致的特征图中包含的小目标信息较少或消失的问题,引入特征复用以增加特征图中的小目标特征信息;在特征融合阶段时使用EMFFN(efficient multi-scale feature fusion network)的特征融合网络代替原有的PANet(path aggregation network),通过添加跳跃连接以及跨层连接高效融合不同尺度的特征图信息;为了应对复杂背景带来的检测效果变差的问题,提出了一种包含通道与像素的双向特征注意力机制(bidirectional feature attention mechanism,BFAM),以提高模型在复杂背景下的检测效果。实验结果表明,改进后的YOLOv5模型在DIOR数据集与RSOD数据集中分别取得了87.8%和96.6%的检测精度,相较原算法分别提高5.2和1.6个百分点,有效提高了复杂背景下的小目标检测精度。 相似文献
15.
针对目前目标检测模型结构复杂、计算量大、检测准确率低等问题,提出在工业场景下基于改进型YOLOv5的安全帽佩戴算法。在主干网络引入轻量型网络ShuffleNetv2,保留Focus结构和ShuffleNetv2共同组成主干网络,降低网络的计算量和参数量;在C3模块中引入Swin Transformer Block,得到C3STB模块,替换Neck部分原有的C3模块;设计了CBAM_H注意力机制,并将其嵌入Neck网络中,获取全局上下文信息,提高模型检测准确率。自建数据集并进行实验,实验结果表明,改进后的YOLOv5模型的参数量由6.14×106压缩到8.9×105,计算量由1.64×1010压缩到6.2×109,mAP由0.899上升到0.908,优于原模型性能。 相似文献
16.
为解决复杂环境下道路目标检测任务中由于目标尺度变化多样、密集遮挡以及光照不均匀等导致的漏检问题,提出了一种基于YOLOv5的道路目标检测改进方法 CTC-YOLO(contextual transformer and convolutional block attention module based on YOLOv5)。针对小目标,改进网络检测头结构,增加多尺度目标检测层,提高小目标检测精度。为了充分利用输入的上下文信息,在特征提取部分引入上下文变换模块(contextual transformer networks,CoTNet),设计了CoT3模块,引导动态注意力矩阵学习,提高视觉表征能力。在Neck部分的C3模块集成卷积块注意力模型(convolutional block attention module,CBAM),以在各种复杂的场景中找到注意力区域。为进一步验证CTC-YOLO方法,采取了一些有用的策略,如模型集成位置选择和对比其他注意力机制。实验结果表明,在公开数据集KITTI、Cityscapes以及BDD100K上mAP@0.5分别达到89.6%、46.1%和57.... 相似文献
17.
在自动驾驶领域, 由于道路背景复杂以及小目标信息缺失, 现有目标检测算法存在检测精度低的问题. 由于车载摄像头视角较为固定, 道路上的目标在图像空间中的分布具有一定的规律, 可以为自动驾驶汽车进行目标检测提供更为丰富的信息. 因此, 提出一种改进YOLOv5s的空间特征增强网络(SE-YOLOv5s). 在YOLOv5s的颈部网络中添加位置注意力模块(location attention module, LAM), 该模块能够根据道路目标在图像中的分布特征进行加权, 增强网络对目标类别位置分布的感知和定位能力. 设计一种小目标增强模块(small target enhancement module, STEM), 将浅层特征和深层特征进行融合, 可以获得更丰富的小目标语义信息和空间细节信息, 提高小目标检测效果. 实验结果表明, 改进模型对不同尺度目标检测精度均有所提高, APS提高2.8%, APM提高2.5%, APL提高2%. 相似文献
18.
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。 相似文献
19.
20.
针对YOLOv5在遥感图像目标检测中未能考虑到遥感图像背景复杂、检测目标较小且图像中目标语义信息占比过低导致的检测效果不佳和易出现误检漏检等问题,提出了一种改进YOLOv5的遥感图像目标检测方法。将轻量级的通道注意力机制引入到原始YOLOv5的特征提取和特征融合网络的C3模块中,以提升网络局部特征捕获与融合能力;强化对遥感图像的多尺度特征表达能力,通过增加一个融合浅层语义信息的细粒度检测层来提高对小目标的检测效果;使用Copy-Paste数据增强方法来丰富训练样本数量,在不增加模型计算量的情况下可进一步解决遥感图像背景信息占比过高而目标区域占比过低的问题。实验结果表明,改进YOLOv5在公开的DOTA和DIOR遥感图像数据集上mAP结果分别达到0.757和0.759。该方法较原始YOLOv5可提高0.017和0.059,相比于其他典型遥感目标检测方法在精度上也有所提升,证明了改进YOLOv5方法的有效性。 相似文献