首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
何博  潘宇飞  陆敏 《材料导报》2017,31(13):126-130, 137
石墨烯是一种具有大比表面积、高电导率和良好的力学性能的二维材料,在高容量和大功率储能器件方面具有广阔的应用前景。然而现有的各种石墨烯电极制造技术无论从技术层面还是在生产率、性能方面都难以满足当前工业应用的需求。石墨烯增材制造(石墨烯3D打印)在复杂三维石墨烯结构的制造方面具有突出的优势和潜力,而且还具有设备简单、成型结构可控性高等优点。关于石墨烯基电极材料的增材制造及应用在近两年内迅速发展。概述了基于增材制造制备石墨烯结构的典型技术——直写成型(DIW)的机理和优点,介绍了基于该技术制备的石墨烯基电极材料在超级电容器和锂离子电池领域的应用,最后对石墨烯基电极材料的增材制造面临的挑战和未来发展趋势进行了展望。  相似文献   

2.
多孔陶瓷具有耐高温、可控孔结构、高孔隙率、化学稳定性和生物惰性等特点,是应用于支柱、生物、催化和电气等领域的理想材料。传统多孔陶瓷的制造方法主要有颗粒堆积、添加造孔剂、发泡、溶胶-凝胶等。近年来,随着增材制造技术的发展,直写成型技术因其简单的设备构造和良好的浆料兼容性,被广泛应用于制造复杂结构和图案的多孔陶瓷。本文综述了直写成型多孔陶瓷的技术方法及其在各领域的应用,详细分析了直写成型技术制备多孔陶瓷材料的优劣势,提出了直写成型制备多孔陶瓷所面临的挑战,并对直写成型制备多孔陶瓷技术发展趋势进行了展望。  相似文献   

3.
作为自然界最丰富的可再生芳香族生物质资源,木质素近年来在能源、环境、医学等领域受到广泛关注。其中,采用3D打印技术构建具有特定结构和功能的木质素基复合材料是提升木质素附加值的重要途径之一,同时可有效避免木质素化学结构复杂多变、多分散性高、刚性大等在传统材料制备过程中带来的负面影响。本文围绕木质素基复合材料的直写式3D打印,重点综述了近年来木质素基复合材料在直写式3D打印方面的研究成果与进展。首先介绍了木质素的结构特性及直写式3D打印技术;然后系统总结了木质素流变学特性与其打印性能之间的构-效关系;最后讨论了3D打印的木质素基复合材料在能源、环境等领域的应用现状及其面临的挑战,并展望了木质素基复合材料在直写式3D打印方面的发展方向。  相似文献   

4.
磷酸钙基生物陶瓷多孔支架是临床中实现骨缺损再生修复的常用骨移植物。光固化3D打印技术以其优异的打印精度和复杂结构成形特性能够精确地控制支架孔尺寸、孔形状、孔连通率,在制备生物陶瓷多孔支架领域展现出巨大的应用潜力。然而,利用光固化3D打印技术制备磷酸钙基生物陶瓷多孔支架仍面临亟需克服的挑战,如缺乏性能优异的磷酸钙基陶瓷打印浆料、打印及后处理工艺不成熟、制备的磷酸钙基陶瓷多孔支架的性能还有待提升。本文首先介绍了几种常用的光固化3D打印技术基本原理与特征,然后从3D打印成形工艺、力学性能、生物活性、支架结构及功能化等方面系统探讨了光固化3D打印技术在制备磷酸钙基生物陶瓷多孔支架领域的研究进展及存在的问题,最后展望了光固化3D打印磷酸钙基生物陶瓷多孔支架的发展趋势和突破点,为利用光固化3D打印技术制备成本低、综合性能优异的磷酸钙基生物陶瓷多孔支架提供参考。  相似文献   

5.
基于光固化技术原理的陶瓷3D打印因可制备尺寸精度高、表面光洁度好、显微结构均匀和力学性能优异的复杂结构陶瓷零件而备受关注,是实现高性能陶瓷零件增材制造的重要技术手段之一。该技术的核心是制备同时具有高固含量和良好打印适性要求的陶瓷浆料,其组成对固化效果和打印进程有着至关重要的影响。本文综述了立体光固化(stereolithography,SL)和数字光处理(digital light processing,DLP)两种主流光固化3D打印方法用于光固化陶瓷打印的技术方案和工作原理,比较了两者的优缺点。围绕近年来在陶瓷浆料领域的研究工作,讨论了单体/低聚物和稀释剂、分散剂、陶瓷颗粒物理性质以及固含量等对黏度、剪切稀化/增稠行为、黏弹性、屈服应力等流变行为的影响,并提出了光固化3D打印陶瓷浆料的主要发展趋势和面临的挑战,为构建高固含量光固化3D打印陶瓷浆料提供了一般性指导原则。  相似文献   

6.
选区激光熔化3D打印钛合金及其复合材料研究进展   总被引:2,自引:0,他引:2  
选区激光熔化(SLM)3D打印技术作为近年来快速兴起的增材制造技术,在航空航天、国防和生物医疗用高性能钛合金及其复合材料关键及复杂结构件方面具有显著优势、发展潜力巨大.SLM 3D钛合金晶粒细小且常含有大量的α′马氏体,而SLM 3D钛基复合材料中则通常可以原位生成纳米尺度的TiBw和TiCp等陶瓷增强相,使得成形构件的力学性能显著优于铸件和粉末冶金制品水平.本文在介绍SLM 3D打印技术的原理与特点基础上,着重评述了其在钛合金及其复合材料的应用基础研究及工程应用进展,并对未来相关关键基础科学与技术问题进行了展望.  相似文献   

7.
冯东  王博  刘琦  陈朔  陈刚  胡天丁 《复合材料学报》2021,38(5):1371-1386
3D打印又称增材制造技术,是基于材料、机械控制、计算机软件等多学科交叉的先进制造技术,可得到传统加工不能制备的形状复杂制件.熔融沉积成型(FDM)是目前最通用的3D打印技术之一,具有设备简单、成本低、操作便捷等特点,广泛应用于航空航天、医疗、汽车工业等领域.本文介绍了国内外3D打印技术的整体布局、发展和规划,总结了常见...  相似文献   

8.
陶瓷材料具有高强度、耐磨损、耐腐蚀和耐高温等特点,在航空航天、生物医疗和电子信息等领域具有良好的应用前景。然而,如何制造应用于上述领域的复杂形状陶瓷零件成为了一个重要的问题。目前,增材制造正逐步成为解决复杂形状陶瓷零件制造问题的有效方式。主要介绍了增材制造专用陶瓷材料及其成形技术。根据增材制造专用陶瓷材料的不同形态,可以将陶瓷材料分为粉材、丝材、片材和浆料/膏材4类。基于此,介绍了激光选区烧结(SLS)、激光选区熔化(SLM)、三维喷印(3DP)、熔融沉积制造(FDM)、分层实体制造(LOM)、立体光固化(SL)、数字光处理(DLP)以及直写成形(DIW) 8类主要陶瓷增材制造技术及其应用。最后,根据陶瓷增材制造的最新研究成果,对增材制造专用陶瓷材料及其成形技术发展作出进一步的展望。  相似文献   

9.
金属3D打印技术依照三维模型进行复杂几何形状构件的制造,可以制造传统制造手段无法实现的复杂结构,已经成为复杂高温合金构件成形的重要技术手段。然而,当采用3D打印工艺制备镍基高温合金构件时,存在原料/能量源/熔池之间的相互作用,并在大温度梯度、极快冷等条件下会进行非平衡凝固,这些特殊的过程决定了3D打印镍基高温合金有着不均匀的微观组织与各向异性的力学性能。现阶段,对增材镍基高温合金微观结构-性能-使役行为的理解比较欠缺,严重限制了其在工业领域的广泛应用。本文讨论了3D打印镍基高温合金的特点;归纳了不同制粉方式、粒径比、粉末成分、缺陷、流动性等粉末原材料特性对3D打印镍基高温合金冶金质量的影响;梳理了3D打印激光能量、扫描速度、扫描间距等工艺参数对镍基高温合金晶粒、析出相及偏析等微观组织的影响;讨论了影响3D打印镍基高温合金拉伸、蠕变及疲劳性能的因素。最后,总结了3D打印镍基高温合金发展过程中面临的问题及可能的对策,提出了一些值得探索的方向。  相似文献   

10.
目前光固化3D打印技术因打印成型精度高而被广泛应用于陶瓷增材制造, 其中非氧化物陶瓷如碳化硅、氮化硅等因打印材料粉体折射率和吸光度比较高, 光固化陶瓷浆料存在分散稳定性差、入射光难穿透并产生光固化反应的固化层厚度低等问题, 导致其固含量很难提高甚至于无法打印成型。高固含量的非氧化物陶瓷打印成型成为光固化3D打印的主要难点, 吸引了广大学者对其光固化机理、粉体调控等机制进行研究。本文系统地总结了几种非氧化物陶瓷光固化浆料的制备、光固化成型、有机物去除及烧结致密化的研究工作, 并就如何对光敏树脂组成进行调节、对陶瓷粉体进行改性的几种方法进行分析与讨论, 针对性地提出创新方案来改善非氧化物陶瓷的浆料性能、光固化打印优化和致密化缺陷修复及性能提升, 最终推动大尺寸、复杂结构的非氧化物陶瓷部件光固化增材制造高精度制备技术的进步。  相似文献   

11.
<正>增材制造具有制造周期短、易于复杂结构成型、节材节能等优势,因此,受到国内外广泛关注。近年来,增材制造已广泛应用于航空航天、医疗器械、电子消费品和工业机械等领域。3D打印材料~1是增材制造发展的基础,美国、日本、欧盟等发达经济体纷纷加大对3D打印材料研发的投入力度。在此背景下,我国3D打印材料基础研究与制备技术发展相对滞后、材料种类少且性能无法达到标准、材料产业发展不成熟、专业人才培养机制匮乏等问题逐渐显现。  相似文献   

12.
通过梳理陶瓷领域的增材制造技术,并结合传统陶瓷的工艺过程及特点,探索增材制造技术对陶瓷器型创新的推进作用,并对未来发展趋势进行展望。基于陶瓷传统工艺过程,提炼传统器型的造型特点,就其存在的限制与问题进行分析;梳理目前陶瓷增材制造的技术发展脉络,探索不同增材制造技术的工艺特点及对陶瓷造型的影响,并结合陶瓷增材制造实例进行设计剖析,从创作方式和设计语言两方面阐述增材制造对于陶瓷器型的创新推进作用;最后对陶瓷增材制造技术进行未来展望。增材制造技术与陶瓷的结合,有力地推进了陶瓷器型的创新设计,使其突破了传统的设计限制,新的技术带来新的设计语言与创作形式,虽然目前仍处于发展阶段,但极具潜力。  相似文献   

13.
<正>3D打印技术是一种通过逐层增加堆积材料来生成三维实体的快速增材制造技术,不但克服了传统减材制造产生的损耗问题,而且使产品制造更智能化、精准化和高效。尤其是涉及到复杂形状的高端制造,3D打印技术显示出了巨大的优越性。随着高端制造业的发展,目前3D打印制造技术受到高度关注,与机器人技术、人工智能技术一起被称为推动第三次工业革命的关键技术。3D打印制造技术主要由3个关键要素组成:一是产品需要进行精  相似文献   

14.
2014年9月21日,"2014新材料国际发展趋势高层论坛——3D打印材料技术前沿论坛"在与会代表的密切关注下,在西安高新技术开发区都市之门二层学术报告厅隆重召开,现场异常火爆,会场内外座无虚席。笔者全程听取了10位报告人关于3D打印材料,3D打印技术的主要特征、进展以及在工业和生物医学领域应用前景等方面的报告。正如中国工程院卢秉恒院士的报告所说,3D打印技术正在改变世界。3D打印是一种颠覆性的制造技术,参照的是打印机技术原理,分层加工。传统制造技术是"减材制造技术",3D打印则是"增材制造技术",它具有制造成本低、生产周期短、能最大限度满足个性化需求等优势。利用3D打印技术为飞机、宇宙飞船和聚变项目制造的零部件要比常规部件更轻、更坚固、更廉价。因为增材制造技术几乎是"零浪费",并且相比焊接和熔合的方法,产品更坚固、更轻。因此,3D打印技术被誉为"第三次工业革命最具标志性的生产工具"。  相似文献   

15.
正3D打印又称"增材制造",美国材料与试验协会(ASTM)F42国际委员会将其明确定义为"采用打印头、喷嘴或其他打印技术沉积材料来制造物体的技术"~([1])。因此,3D打印是一类制造技术的总称,从内涵至外延包含了广泛的原材料应用和增材工艺方法。自1892年基于叠层制造原理的立体地形模型制造专利发布起,3D打印技术的原始创新活动蓬勃发展,近30年来国内外大量学者将增材工艺与数字化制造  相似文献   

16.
<正>3D打印,是一种增材制造方法,相对于传统机械加工"减材制造"技术而言,是一项制造业领域的技术革命,展现了新时代个性化创造的活力和潜力。3D打印技术起源于美国,这项新技术的出现,不仅给予了创新主体一个全新的视角,同时也吸引了大众的高度关注。3D打印技术在20世纪末期逐渐得到推广,又被称为第3次工业革命的重要标志之一。该技术可以应用到生产加工、建筑工程等领域,利用该技术制造材料,不用加工模具和大型机械设备,甚至不用在大型工厂便可进行生产,3D打印技术将会改变社会发展的方向,并会大大丰富  相似文献   

17.
<正>3D打印(又称“增材制造”)技术,是20世纪80年代末期产生并发展起来的一种区别于传统减材制造技术的先进数字化制造技术,被视为“第四次工业革命”的支撑技术之一。常用于模具制造、工业设计模型等,后来逐步扩展到航空航天、建筑、汽车制造和医疗器械等领域。本文就3D打印在医疗器械领域的应用及其前景进行分析。  相似文献   

18.
陶瓷以其优异的热物理化学性能在航空航天、能源、环保以及生物医疗等领域具有极大的应用潜力。随着这些领域相关技术的快速发展, 其核心零件部件外形结构设计日益复杂、内部组织逐步走向定制化、梯度化。陶瓷具有硬度高、脆性大等特点, 较难通过传统的加工成形方法实现异形结构零件的制造, 最终限制了陶瓷材料的工程应用范围。激光增材制造技术作为一种快速发展的增材制造技术, 在复杂精密陶瓷零部件的制造中具有显著优势: 无模、精度高、响应快以及周期短, 同时能够实现陶瓷零件组织结构灵活调配, 有望解决上述异形结构陶瓷零件成形问题。本文综述了多种基于粉末成形的激光增材制造陶瓷技术: 基于粉末床熔融的激光选区烧结和激光选区熔化; 基于定向能量沉积的激光近净成形技术。主要讨论了各类激光增材陶瓷技术的成形原理与特点, 综述了激光选区烧结技术中陶瓷坯体后处理致密化工艺以及激光选区熔化和激光近净成形技术这两种技术中所打印陶瓷坯体基体裂纹开裂行为分析及其控制方法的研究进展, 对比分析了激光选区烧结、激光选区熔化以及激光近净成形技术在成形陶瓷零件的技术特征, 最后展望了激光增材制造陶瓷技术的未来发展趋势。  相似文献   

19.
UV-3D打印作为增材技术新的发展方向,具有设计自由,节约材料以及快速成型等优点,被广泛研究.本文通过分析立体光刻技术(SLA),数字光处理技术(DLP)和UV直写技术等,并研究了UV技术在3D打印领域的应用与发展.然后分析UV-3D打印常用的一些材料,包括环氧树脂和丙烯酸树脂以及其发展现状.最后通过介绍UV技术在3D...  相似文献   

20.
<正>3D打印,又称增材制造(AM),是根据所设计的3D模型,通过3D打印设备逐层增加材料来制造三维产品的技术。与传统制造技术相比,由于3D打印不必事先制造模具,不必在制造过程中去除大量的材料,也不必通过复杂的锻造工艺就可以得到最终产品,因此,在生产上可以实现结构优化、节约材料和节省能源。3D打印技术的这些优势,使其适合于新产品开发、快速单件及小批量零件制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号