首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
LPS induces inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and causes an inflammatory response. The development of small molecules that have suppressive effect on those inflammatory cytokines is a desirable strategy for the treatment of inflammatory diseases. We synthesized 12 novel compounds with 4-amino-N-(4-(benzo[d]oxazol-2-ylamino)phenyl)butanamide moiety and evaluated their biological activities. Among them, 4 compounds (compound 5d, 5c, 5f, 5m and synthetic intermediate 4d) showed potent inhibition activities on IL-1β and IL-6 mRNA expression in vitro. Further, in vivo activity was evaluated with two compounds (5f and 4d) and mRNA levels of IL-1β, IL-6, and TNF-α were significantly decreased without hepatotoxicity. From the in vivo and in vitro test results, we confirmed that our synthesized compounds are effective for suppression of representative inflammatory cytokines.  相似文献   

2.
We previously showed that Lactiplantibacillus plantarum K8 and its cell wall components have immunoregulatory effects. In this study, we demonstrate that pre-treatment of L. plantarum K8 lysates reduced LPS-induced TNF-α production in THP-1 cells by down-regulating the early signals of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The down-regulation of signals may be caused by the induction of negative regulators involved in toll-like receptor (TLR)-mediated signaling. However, co-treatment with high concentrations of L. plantarum K8 lysates and lipopolysaccharide (LPS) activated the late signaling of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB pathways and resulted in the induction of absent in melanoma 2 (AIM2) inflammasome-mediated interleukin (IL)-1β secretion. Intraperitoneal injection of L. plantarum K8 lysates in LPS-induced endotoxin shock mice alleviated mortality and reduced serum tumor-necrosis factor (TNF)-α, IL-1β, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. In addition, the mRNA levels of TNF-α, IL-1β, and IL-6 decreased in livers from mice injected with L. plantarum K8 followed by LPS. Hematoxylin and eosin (H&E) staining of the liver showed that the cell size was enlarged by LPS injection and slightly reduced by L. plantarum K8 lysate pre-injection followed by LPS injection. Macrophage infiltration of the liver also decreased in response to the combination injection compared with mice injected with only LPS. Taken together, our results show that although L. plantarum K8 lysates differentially regulated the production of LPS-induced inflammatory cytokines in THP-1 cells, the lysates inhibited overall inflammation in mice. Thus, this study suggests that L. plantarum K8 lysates could be developed as a substance that modulates immune homeostasis by regulating inflammation.  相似文献   

3.
4.
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia.  相似文献   

5.
6.
Saponins are natural compounds found in plants and have a diverse range of applications. However, the therapeutic potential of saponins in regulating cytotoxicity, angiogenesis, and inflammation in mammalian cells is yet to be explored. Here, we investigated the therapeutic effects of saponins from green tea by exploring the cytotoxic effects of saponins by inducing apoptosis in the human cancer cell lines hepatocellular carcinoma (HEPG2) and colorectal adenocarcinoma (HT29). The anti-angiogenesis effect of saponins was also investigated in human umbilical vein endothelial cells (HUVEC). We explored the ability of saponins to attenuate inflammation in a dose-dependent manner in normal human cells. It was found that saponins exhibit cytotoxic effects in cancer cells and not in normal cells at the same concentration. Cytotoxicity was measured by inducing apoptosis by enhancing caspase-3 (cas-3) activation and B-cell lymphoma-2 (Bcl-2)-associated X protein (BAX) gene expression and suppressing the antiapoptotic protein, Bcl-2. The inhibition of HUVEC proliferation was due to the suppression of the phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), vascular endothelial growth factor receptor-2 (VEGFR-2), and nuclear factor kappa B (NF-κB). We also observed the antioxidant potential of green tea-derived saponins against free radicals in reactive oxygen species (ROS)-induced cells. Here we observed that the saponins exhibited free radical scavenging activities and activated nuclear factorerythroid 2-related factor 2 (NRF-2) leading to the upregulation of antioxidant-related genes in human embryonic kidney 293 (HEK293) cells. Furthermore, we demonstrated that the anti-inflammatory effects were due to the suppression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in HEK293 cells. The significance of the work is we are the first to report on the anti-cancer effects of saponins based on the anti-inflammatory, antioxidant, anti-angiogenesis, and apoptosis induction properties. In conclusion, green tea-derived saponins could be effective therapeutics for the treatment of cancer.  相似文献   

7.
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic systemic inflammation causing progressive joint damage that can lead to lifelong disability. The pathogenesis of RA involves a complex network of various cytokines and cells that trigger synovial cell proliferation and cause damage to both cartilage and bone. Involvement of the cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 is central to the pathogenesis of RA, but recent research has revealed that other cytokines such as IL-7, IL-17, IL-21, IL-23, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1β, IL-18, IL-33, and IL-2 also play a role. Clarification of RA pathology has led to the development of therapeutic agents such as biological disease-modifying anti-rheumatic drugs (DMARDs) and Janus kinase (JAK) inhibitors, and further details of the immunological background to RA are emerging. This review covers existing knowledge regarding the roles of cytokines, related immune cells and the immune system in RA, manipulation of which may offer the potential for even safer and more effective treatments in the future.  相似文献   

8.
Increasing evidences suggest that inflammation plays an important role in the pathogenesis of coronary artery disease (CAD). Numerous inflammatory cytokines and related genes mediate adverse cardiovascular events in patients with CAD, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and Homer in the present study. The study was carried out on 163 CAD patients at different stages and 68 controls. The gene expression of Homer1, Homer2, Homer3, IL-1β, and TNF-α in the peripheral blood leukocytes were measured by real-time polymerase chain reaction. The mRNA levels of Homer1, IL-1β, and TNF-α in CAD patients were significantly higher than those in the control group, but not Homer2 and Homer3. However, there was no considerable difference in the mRNA levels of Homer1, IL-1β, and TNF-α among AMI, UAP, and SAP three subgroups of CAD. The receiver operating characteristic (ROC) curves showed that Homer1 had a better diagnostic value for UAP patients compared with IL-1β and TNF-α. Like IL-1β and TNF-α, Homer1 may also be an important participant of atherosclerotic plaque development and eventually rupture. The results of the present study may provide an important basis for diagnosing CAD patients, and provide new therapeutic targets for CAD.  相似文献   

9.
Recent studies have discovered a relationship between glycosylphosphatidylinositol (GPI)-anchored protein 80 (GPI-80)/VNN2 (80 kDa GPI-anchored protein) and malignant tumors. GPI-80 is known to regulate neutrophil adhesion; however, the action of GPI-80 on tumors is still obscure. In this study, although the expression of GPI-80 mRNA was detectable in several tumor cell lines, the levels of GPI-80 protein were significantly lower than that in neutrophils. To clarify the function of GPI-80 in tumor cells, GPI-80-expressing cells and GPI-80/VNN2 gene-deleted cells were established using PC3 prostate cancer cells. In GPI-80-expressing cells, GPI-80 was mainly detected in vesicles. Furthermore, soluble GPI-80 in the conditioned medium was associated with the exosome marker CD63 and was also detected in the plasma obtained from prostate cancer patients. Unexpectedly, cell adhesion and migration of GPI-80-expressing PC3 cells were not modulated by anti-GPI-80 antibody treatment. However, similar to the GPI-80 family molecule, VNN1, the pantetheinase activity and oxidative state were augmented in GPI-80-expressing cells. GPI-80-expressing cells facilitated non-adhesive proliferation, slow cell proliferation, NF-κB activation and IL-1β production. These phenomena are known to be induced by physiological elevation of the oxidative state. Thus, these observations indicated that GPI-80 affects various tumor responses related to oxidation.  相似文献   

10.
The blood-brain barrier (BBB) is a selective barrier and a functional gatekeeper for the central nervous system (CNS), essential for maintaining brain homeostasis. The BBB is composed of specialized brain endothelial cells (BECs) lining the brain capillaries. The tight junctions formed by BECs regulate paracellular transport, whereas transcellular transport is regulated by specialized transporters, pumps and receptors. Cytokine-induced neuroinflammation, such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), appear to play a role in BBB dysfunction and contribute to the progression of Alzheimer’s disease (AD) by contributing to amyloid-β (Aβ) peptide accumulation. Here, we investigated whether TNF-α and IL-1β modulate the permeability of the BBB and alter Aβ peptide transport across BECs. We used a human BBB in vitro model based on the use of brain-like endothelial cells (BLECs) obtained from endothelial cells derived from CD34+ stem cells cocultivated with brain pericytes. We demonstrated that TNF-α and IL-1β differentially induced changes in BLECs’ permeability by inducing alterations in the organization of junctional complexes as well as in transcelluar trafficking. Further, TNF-α and IL-1β act directly on BLECs by decreasing LRP1 and BCRP protein expression as well as the specific efflux of Aβ peptide. These results provide mechanisms by which CNS inflammation might modulate BBB permeability and promote Aβ peptide accumulation. A future therapeutic intervention targeting vascular inflammation at the BBB may have the therapeutic potential to slow down the progression of AD.  相似文献   

11.
Tumor necrosis factor alpha (TNF-α) was initially recognized as a factor that causes the necrosis of tumors, but it has been recently identified to have additional important functions as a pathological component of autoimmune diseases. TNF-α binds to two different receptors, which initiate signal transduction pathways. These pathways lead to various cellular responses, including cell survival, differentiation, and proliferation. However, the inappropriate or excessive activation of TNF-α signaling is associated with chronic inflammation and can eventually lead to the development of pathological complications such as autoimmune diseases. Understanding of the TNF-α signaling mechanism has been expanded and applied for the treatment of immune diseases, which has resulted in the development of effective therapeutic tools, including TNF-α inhibitors. Currently, clinically approved TNF-α inhibitors have shown noticeable potency in a variety of autoimmune diseases, and novel TNF-α signaling inhibitors are being clinically evaluated. In this review, we briefly introduce the impact of TNF-α signaling on autoimmune diseases and its inhibitors, which are used as therapeutic agents against autoimmune diseases.  相似文献   

12.
This study was designed to determine the effect of acute caffeine (CAF) administration, which exerts a broad spectrum of anti-inflammatory activity, on the synthesis of pro-inflammatory cytokines and their receptors in the hypothalamus and choroid plexus (ChP) during acute inflammation caused by the injection of bacterial endotoxin—lipopolysaccharide (LPS). The experiment was performed on 24 female sheep randomly divided into four groups: control; LPS treated (iv.; 400 ng/kg of body mass (bm.)); CAF treated (iv.; 30 mg/kg of bm.); and LPS and CAF treated. The animals were euthanized 3 h after the treatment. It was found that acute administration of CAF suppressed the synthesis of interleukin (IL-1β) and tumor necrosis factor (TNF)α, but did not influence IL-6, in the hypothalamus during LPS-induced inflammation. The injection of CAF reduced the LPS-induced expression of TNF mRNA in the ChP. CAF lowered the gene expression of IL-6 cytokine family signal transducer (IL6ST) and TNF receptor superfamily member 1A (TNFRSF1) in the hypothalamus and IL-1 type II receptor (IL1R2) in the ChP. Our study on the sheep model suggests that CAF may attenuate the inflammatory response at the hypothalamic level and partly influence the inflammatory signal generated by the ChP cells. This suggests the potential of CAF to suppress neuroinflammatory processes induced by peripheral immune/inflammatory challenges.  相似文献   

13.
14.
15.
16.
miR-155 plays a crucial role in proinflammatory activation. This study was carried out to assess the association of abnormal expression of miR-155 in peripheral blood of patients with Rheumatoid arthritis with the expression of TNF-α and IL-1β. Release of TNF-α and IL-1β, and expression of miR-155 were determined in RA peripheral blood or peripheral blood macrophages, followed by correlation analysis of the cytokines release and miR-155 expression. Furthermore, in vitro studies indicate that miR-155 inhibited the expression of SOCS1. Our results suggest that there is a correlation between the high-level expression of miR-155 and the enhanced expression of TNF-α and IL-1β. miR-155 targets and suppresses the expression of SOCS1, and the decrease of SOCS1 may lead to the upregulation of TNF-α and IL-1β.  相似文献   

17.
Chronic low-grade inflammation plays a central role in the pathogenesis of osteoarthritis (OA), and several pro- and anti-inflammatory cytokines have been implicated to mediate and regulate this process. Out of these cytokines, particularly IFNγ, IL-1β, IL-4 and IL-17 are associated with different phenotypes of T helper (TH) cells and macrophages, both examples of cells known for great phenotypic and functional heterogeneity. Chondrocytes also display various phenotypic changes during the course of arthritis. We set out to study the hypothesis of whether chondrocytes might adopt polarized phenotypes analogous to TH cells and macrophages. We studied the effects of IFNγ, IL-1β, IL-4 and IL-17 on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were harvested from the cartilage of OA patients undergoing knee replacement surgery and then cultured with or without the cytokines for 24 h. Total RNA was isolated and sequenced, and GO (Gene Ontology) functional analysis was performed. We also separately investigated genes linked to OA in recent genome wide expression analysis (GWEA) studies. The expression of more than 2800 genes was significantly altered in chondrocytes treated with IL-1β [in the C(IL-1β) phenotype] with a fold change (FC) > 2.5 in either direction. These included a large number of genes associated with inflammation, cartilage degradation and attenuation of metabolic signaling. The profile of genes differentially affected by IFNγ (the C(IFNγ) phenotype) was relatively distinct from that of the C(IL-1β) phenotype and included several genes associated with antigen processing and presentation. The IL-17-induced C(IL-17) phenotype was characterized by the induction of a more limited set of proinflammatory factors compared to C(IL-1β) cells. The C(IL-4) phenotype induced by IL-4 displayed a differential expression of a rather small set of genes compared with control, primarily those associated with TGFβ signaling and the regulation of inflammation. In conclusion, our results show that OA chondrocytes can adopt diverse phenotypes partly analogously to TH cells and macrophages. This phenotypic plasticity may play a role in the pathogenesis of arthritis and open new therapeutic avenues for the development of disease-modifying treatments for (osteo)arthritis.  相似文献   

18.
Tumor necrosis factor-alpha (TNF-α) is a multifunctional Th1 cytokine and one of the most important inflammatory cytokines. In pregnancy, TNF-α influences hormone synthesis, placental architecture, and embryonic development. It was also shown that increased levels of TNF-α are associated with pregnancy loss and preeclampsia. Increased TNF-α levels in complicated pregnancy draw attention to trophoblast biology, especially migratory activity, syncytialisation, and endocrine function. Additionally, elevated TNF-α levels may affect the maternal-fetal relationship by altering the secretory profile of placental immunomodulatory factors, which in turn affects maternal immune cells. There is growing evidence that metabolic/pro-inflammatory cytokines can program early placental functions and growth in the first trimester of pregnancy. Furthermore, early pregnancy placenta has a direct impact on fetal development and maternal immune system diseases that release inflammatory (e.g., TNF-α) and immunomodulatory factors, such as chronic inflammatory rheumatic, gastroenterological, or dermatological diseases, and may result in an abnormal release of cytokines and chemokines in syncytiotrophoblasts. Pregnancy poses a challenge in the treatment of chronic disease in patients who plan to have children. The activity of the disease, the impact of pregnancy on the course of the disease, and the safety of pharmacotherapy, including anti-rheumatic agents, in pregnancy should be considered.  相似文献   

19.
Diabetes is a chronic metabolic disorder characterized by inappropriately elevated glucose levels as a result of impaired pancreatic β cell function and insulin resistance. Extensive studies have been conducted to elucidate the mechanism involved in the development of β cell failure and death under diabetic conditions such as hyperglycemia, hyperlipidemia, and inflammation. Of the plethora of proposed mechanisms, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and oxidative stress have been shown to play a central role in promoting β cell dysfunction. It has become more evident in recent years that these 3 factors are closely interrelated and importantly aggravate each other. Oxidative stress in particular is of great interest to β cell health and survival as it has been shown that β cells exhibit lower antioxidative capacity. Therefore, this review will focus on discussing factors that contribute to the development of oxidative stress in pancreatic β cells and explore the downstream effects of oxidative stress on β cell function and health. Furthermore, antioxidative capacity of β cells to counteract these effects will be discussed along with new approaches focused on preserving β cells under oxidative conditions.  相似文献   

20.
Currently, migraine is treated mainly by targeting calcitonin gene-related peptides, although the efficacy of this method is limited and new treatment strategies are desired. Neuroinflammation has been implicated in the pathogenesis of migraine. In patients with migraine, peripheral levels of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α, are known to be increased. Additionally, animal models of headache have demonstrated that immunological responses associated with cytokines are involved in the pathogenesis of migraine. Furthermore, these inflammatory mediators might alter the function of tight junctions in brain vascular endothelial cells in animal models, but not in human patients. Based on clinical findings showing elevated IL-1β, and experimental findings involving IL-1β and both the peripheral trigeminal ganglion and central trigeminal vascular pathways, regulation of the Il-1β/IL-1 receptor type 1 axis might lead to new treatments for migraine. However, the integrity of the blood-brain barrier is not expected to be affected during attacks in patients with migraine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号