首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the underlying mechanisms of xanthohumol (XN) on the proliferation inhibition and death of C6 glioma cells. METHODS: To determine the effects of XN on C6 cells, cell proliferation and mortality after XN treatment were assessed by SRB assay and trypan blue assay respectively. Apoptotic rates were evaluated by flowcytometry after Annexin V-FITC/PI double staining. The influence of XN on the activity of caspase-3 was determined by Western blot (WB); and nuclear transposition of apoptosis-inducing factor (AIF) was tested by immunocytochemistry and WB. By MitoSOXTM staining, the mitochondrial ROS were detected. Mitochondrial function was also tested by MTT assay (content of succinic dehydrogenase), flow cytometry (mitochondrial membrane potential (MMP)—JC-1 staining; mitochondrial abundance—mito-Tracker green), immunofluorescence (MMP—JC-1 staining; mitochondrial morphology—mito-Tracker green), WB (mitochondrial fusion-fission protein—OPA1, mfn2, and DRP1; mitophagy-related proteins—Pink1, Parkin, LC3B, and P62), and high-performance liquid chromatography (HPLC) (energy charge). Finally, mitochondrial protein homeostasis of C6 cells after XN treatment with and without LONP1 inhibitor bortezomib was investigated by trypan blue assay (proliferative activity and mortality) and WB (mitochondrial protease LONP1). All cell morphology images were taken by a Leica Microsystems microscope. RESULTS: XN could lead to proliferation inhibition and death of C6 cells in a time- and dose-dependent manner and induce apoptosis of C6 cells through the AIF pathway. After long incubation of XN, mitochondria of C6 cells were seriously impaired, and mitochondria had a diffuse morphology and mitochondrial ROS were increased. The content of succinic dehydrogenase per cell was significantly decreased after XN insults of 24, 48, and 72 h. The energy charge was weakened after XN insult of 24 h. Furthermore, the MMP and mitochondrial abundance were significantly decreased; the protein expression levels of OPA1, mfn2, and DRP1 were down-regulated; and the protein expression levels of Pink1, Parkin, LC3B-II/LC3B-I, and p62 were up-regulated in long XN incubation times (24, 48, and 72 h). XN incubation with bortezomib for 48 h resulted in lower proliferative activity and higher mortality of C6 cells and caused the cell to have visible vacuoles. Moreover, the protein expression levels of LONP1 was up-regulated gradually as XN treatment time increased. CONCLUSION: These data supported that XN could induce AIF pathway apoptosis of the rat glioma C6 cells by affecting the mitochondria.  相似文献   

2.
Ultraviolet B (UVB) induces cell death by increasing free radical production, activating apoptotic cell death pathways and depolarizing mitochondrial membrane potential. Coenzyme Q10 (CoQ10), an essential cofactor in the mitochondrial electron transport chain, serves as a potent antioxidant in the mitochondria. The aim of the present study is to establish whether CoQ10 is capable of protecting neuronal cells against UVB-induced damage. Murine hippocampal HT22 cells were treated with 0.01, 0.1 or 1 μM of CoQ10 3 or 24 h prior to the cells being exposed to UVB irradiation. The CoQ10 concentrations were maintained during irradiation and 24 h post-UVB. Cell viability was assessed by counting viable cells and MTT conversion assay. Superoxide production and mitochondrial membrane potential were measured using fluorescent probes. Levels of cleaved caspase-9, caspase-3, and apoptosis-inducing factor (AIF) were detected using immunocytochemistry and Western blotting. The results showed that UVB irradiation decreased cell viability and such damaging effect was associated with increased superoxide production, mitochondrial depolarization, and activation of caspase-9 and caspase-3. Treatment with CoQ10 at three different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide production, normalization of mitochondrial membrane potential and inhibition of caspase-9 and caspase-3 activation. It is concluded that the neuroprotective effect of CoQ10 results from inhibiting oxidative stress and blocking caspase-3 dependent cell death pathway.  相似文献   

3.
Parkinson's disease (PD) is a progressive neurological disorder marked by nigrostriatal dopaminergic degeneration. Evidence suggests that mitochondrial dysfunction may be linked to PD through a variety of different pathways, including free-radical generation and dysfunction of the mitochondrial Complex I activity. In Lewis rats, chronic systemic administration of a specific mitochondrial Complex I inhibitor, rotenone (3 mg/kg/day) produced parkinsonism-like symptoms. Increased oxidized proteins and peroxynitrite, and mitochondrial or cytosol translocation of Bim, Bax or cytochrome c in the striatum was observed after 2-4 weeks of rotenone infusion. After 28 days of systemic rotenone exposure, imunohistochemical staining for tyrosine hydroxylase indicated nigrostriatal dopaminergic neuronal cell degeneration. Characteristic histochemical (TUNEL or activated caspase-3 staining) or ultrastructural (electron microscopy) features of apoptotic cell death were present in the striatal neuronal cell after chronic rotenone intoxication. We conclude that chronic rotenone intoxication may enhance oxidative and nitrosative stress that induces mitochondrial dysfunction and ultrastructural damage, resulting in translocation of Bim and Bax from cytosol to mitochondria that contributes to apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade.  相似文献   

4.
TNF-receptor associated protein (TRAP1) is a cytoprotective mitochondrial-specific member of the Hsp90 heat shock protein family of protein chaperones that has been shown to antagonise mitochondrial apoptosis and oxidative stress, regulate the mitochondrial permeability transition pore and control protein folding in mitochondria. Here we show that overexpression of TRAP1 protects motor neurons from mitochondrial dysfunction and death induced by exposure to oxidative stress conditions modelling amyotrophic lateral sclerosis (ALS). ALS is a fatal neurodegenerative disease in which motor neurons degenerate, leading to muscle weakness and atrophy and death, typically within 3 years of diagnosis. In primary murine motor neurons, shRNA-mediated knockdown of TRAP1 expression results in mitochondrial dysfunction but does not further exacerbate damage induced by oxidative stress alone. Together, these results show that TRAP1 may be a potential therapeutic target for neurodegenerative diseases such as ALS, where mitochondrial dysfunction has been shown to be an early marker of pathogenesis.  相似文献   

5.
Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCβII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCβII specific inhibitor peptide βIIV5-3-treated IR. Vehicle or βIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCβII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 μM) to evaluate the inhibition of GLS1 on neuronal viability. PKCβII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by βIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCβII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.  相似文献   

6.
Bisphenol A (BPA) is an environmental contaminant widely suspected to be a neurological toxicant. Epidemiological studies have demonstrated close links between BPA exposure, pathogenetic brain degeneration, and altered neurobehaviors, considering BPA a risk factor for cognitive dysfunction. However, the mechanisms of BPA resulting in neurodegeneration remain unclear. Herein, cultured N2a neurons were subjected to BPA treatment, and neurotoxicity was assessed using neuronal viability and differentiation assays. Signaling cascades related to cellular self-degradation were also evaluated. BPA decreased cell viability and axon outgrowth (e.g., by down-regulating MAP2 and GAP43), thus confirming its role as a neurotoxicant. BPA induced neurotoxicity by down-regulating Bcl-2 and initiating apoptosis and autophagy flux inhibition (featured by nuclear translocation of apoptosis-inducing factor (AIF), light chain 3B (LC3B) aggregation, and p62 accumulation). Both heme oxygenase (HO)-1 and AMP-activated protein kinase (AMPK) up-regulated/activated by BPA mediated the molecular signalings involved in apoptosis and autophagy. HO-1 inhibition or AIF silencing effectively reduced BPA-induced neuronal death. Although BPA elicited intracellular oxygen free radical production, ROS scavenger NAC exerted no effect against BPA insults. These results suggest that BPA induces N2a neurotoxicity characterized by AIF-dependent apoptosis and p62-related autophagy defects via HO-1 up-regulation and AMPK activation, thereby resulting in neuronal degeneration.  相似文献   

7.
It has been studied that the damage or death of neurons in the hippocampus is different according to hippocampal subregions, cornu ammonis 1–3 (CA1–3), after transient ischemia in the forebrain, showing that pyramidal neurons located in the subfield CA1 (CA1) are most vulnerable to this ischemia. Hyperthermia is a proven risk factor for brain ischemia and can develop more severe and extensive brain damage related with mortality rate. It is well known that heme oxygenase-1 (HO-1) activity and expression is increased by various stimuli in the brain, including hyperthermia. HO-1 can be either protective or deleterious in the central nervous system, and its roles depend on the expression levels of enzymes. In this study, we investigated the effects of hyperthermia during ischemia on HO-1 expression and neuronal damage/death in the hippocampus to examine the relationship between HO-1 and neuronal damage/death following 5-min transient ischemia in the forebrain using gerbils. Gerbils were assigned to four groups: (1) sham-operated gerbils with normothermia (Normo + sham group); (2) ischemia-operated gerbils with normothermia (Normo + ischemia group); (3) sham-operated gerbils with hyperthermia (39.5 ± 0.2 °C) during ischemia (Hyper + sham group); and (4) ischemia-operated gerbils with hyperthermia during ischemia (Hyper + ischemia group). HO-1 expression levels in CA1–3 of the Hyper + ischemia group were significantly higher than those in the Normo + ischemia group. HO-1 immunoreactivity in the Hyper + ischemia group was significantly increased in pyramidal neurons and astrocytes with time after ischemia, and the immunoreactivity was significantly higher than that in the Normo + ischemia group. In the Normo + Ischemia group, neuronal death was shown in pyramidal neurons located only in CA1 at 5 days after ischemia. However, in the Hyper + ischemia group, pyramidal neuronal death occurred in CA1–3 at 2 days after ischemia. Taken together, our findings showed that brain ischemic insult during hyperthermic condition brings up earlier and severer neuronal damage/death in the hippocampus, showing that HO-1 expression in neurons and astrocytes is different according to brain subregions and temperature condition. Based on these findings, we suggest that hyperthermia in patients with ischemic stroke must be taken into the consideration in the therapy.  相似文献   

8.
The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.  相似文献   

9.
The primary physiological function of mitochondria is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Overproduction of reactive oxygen species (ROS) as byproducts generated from mitochondria have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was well-documented that mitochondria-dependent apoptotic pathway involves pro- and anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal death. On the other hand, mitochondria also play a role to counteract the detrimental effects elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves peroxisome proliferative activated receptor-γ (PPARγ) co-activator 1α (PGC1-α). PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that is vital for cell survival. Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke. This review aims to summarize the current knowledge focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, and mitochondrial biogenesis.  相似文献   

10.
Transient forebrain or global ischemia induces neuronal death in vulnerable CA1 pyramidal cells with many features. A brief period of ischemia, i.e., ischemic preconditioning, or a modified reperfusion such as ischemic postconditioning, can afford robust protection of CA1 neurons against ischemic challenge. Therefore, we investigated the effect of ischemic preconditioning and postconditioning on neural cell apoptosis in rats. The result showed that both ischemic preconditioning and postconditioning may attenuate the neural cell death and DNA fragment in the hippocampal CA1 region. Further western blot study suggested that ischemic preconditioning and postconditioning down-regulates the protein of cleaved caspase-3, caspase-6, caspase-9 and Bax, but up-regulates the protein Bcl-2. These findings suggest that ischemic preconditioning and postconditioning have a neuroprotective role on global brain ischemia in rats through the same effect on inhibition of apoptosis.  相似文献   

11.
Fungicides often cause genotoxic stress and neurodevelopmental disorders such as autism (ASD). Fungicide-azoxystrobin (AZOX) showed acute and chronic toxicity to various organisms, and remained a concern for ill effects in developing neurons. We evaluated the neurotoxicity of AZOX in developing mouse brains, and observed prenatal exposure to AZOX reduced neuronal viability, neurite outgrowth, and cortical migration process in developing brains. The 50% inhibitory concentration (IC50) of AZOX for acute (24 h) and chronic (7 days) exposures were 30 and 10 μM, respectively. Loss in viability was due to the accumulation of reactive oxygen species (ROS), and inhibited neurite outgrowth was due to the deactivation of mTORC1 kinase activity. Pretreatment with ROS scavenger- N-acetylcysteine (NAC) reserved the viability loss and forced activation of mTORC1 kinase revived the neurite outgrowth in AZOX treated neurons. Intra-amniotic injection of AZOX coupled with in utero electroporation of GFP-labelled plasmid in E15.5 mouse was performed and 20 mg/kg AZOX inhibited radial neuronal migration. Moreover, the accumulation of mitochondria was significantly reduced in AZOX treated primary neurons, indicative of mitochondrial deactivation and induction of apoptosis, which was quantified by Bcl2/Bax ratio and caspase 3 cleavage assay. This study elucidated the neurotoxicity of AZOX and explained the possible cure from it.  相似文献   

12.
High mobility group box 1 (HMGB1) has been demonstrated to promote the migration and invasion of non-small cell lung cancer (NSCLC). However, the mechanism of action of HMGB1 in regulating tumor mobility remains unclear. Therefore, we aimed to investigate whether HMGB1 affects mitochondria distribution and regulates dynamin-related protein 1 (DRP1)-mediated lamellipodia/filopodia formation to promote NSCLC migration. The regulation of mitochondrial membrane tension, dynamics, polarization, fission process, and cytoskeletal rearrangements in lung cancer cells by HMGB1 was analyzed using confocal microscopy. The HMGB1-mediated regulation of DRP1 phosphorylation and colocalization was determined using immunostaining and co-immunoprecipitation assays. The tumorigenic potential of HMGB1 was assessed in vivo and further confirmed using NSCLC patient samples. Our results showed that HMGB1 increased the polarity and mobility of cells (mainly by regulating the cytoskeletal system actin and microtubule dynamics and distribution), promoted the formation of lamellipodia/filopodia, and enhanced the expression and phosphorylation of DRP1 in both the nucleus and cytoplasm. In addition, HMGB1 and DRP1 expressions were positively correlated and exhibited poor prognosis and survival in patients with lung cancer. Collectively, HMGB1 plays a key role in the formation of lamellipodia and filopodia by regulating cytoskeleton dynamics and DRP1 expression to promote lung cancer migration.  相似文献   

13.
Neuromedin S (NMS) plays various roles in reproductive regulation, while the mechanism by which NMS regulates ovarian steroidogenesis remains unclear. In the current study, we confirmed the enhancement role of NMS in steroidogenesis in goat ovarian granulosa cells (GCs). To further explore the specific mechanism, we conducted a knockdown of NMUR2 in GCs followed by treatment with NMS and determined the effects of NMS treatment on mitochondrial morphology and function. The results found that NMS treatment increased the production of estrogen and up-regulated the expression of STAR, CYP11A1, 3BHSD, and CYP19A1, while the effects of NMS treatment were blocked by the knockdown of NMUR2 in goat GCs. Moreover, NMS treatment enhanced the fusion of mitochondria and up-regulated the expression of OPA1, MFN1, and MFN2, and increased mitochondrial membrane potential, the activity of respiratory chain enzymes and ATP production by maintaining a low expression level of mitochondrial unfolded protein response markers. The effects of NMS treatment on mitochondria were reversed by NMUR2 knockdown and NMS cotreatment. The possible mechanism of the results above was revealed by NMS treatment activating the Hippo pathway effector YAP1 and then managing the expression of phosphorylation PPARGC1A (Ser571). Together, these data showed that NMS promoted the fusion of mitochondria and protected mitochondrial function from mitochondrial unfolded protein response possibly via the NMUR2/YAP1/PPARGC1A pathway, thereby affecting the steroidogenesis of goat GCs. By elaborating the potential mechanism of NMS in regulating estrogen production in goat GCs, our results can serve as the mechanism reference for follicular growth and development.  相似文献   

14.
Adhesion molecules regulate cell proliferation, migration, survival, neuritogenesis, synapse formation and synaptic plasticity during the nervous system’s development and in the adult. Among such molecules, the neural cell adhesion molecule L1 contributes to these functions during development, and in synapse formation, synaptic plasticity and regeneration after trauma. Proteolytic cleavage of L1 by different proteases is essential for these functions. A proteolytic fragment of 70 kDa (abbreviated L1-70) comprising part of the extracellular domain and the transmembrane and intracellular domains was shown to interact with mitochondrial proteins and is suggested to be involved in mitochondrial functions. To further determine the role of L1-70 in mitochondria, we generated two lines of gene-edited mice expressing full-length L1, but no or only low levels of L1-70. We showed that in the absence of L1-70, mitochondria in cultured cerebellar neurons move more retrogradely and exhibit reduced mitochondrial membrane potential, impaired Complex I activity and lower ATP levels compared to wild-type littermates. Neither neuronal migration, neuronal survival nor neuritogenesis in these mutants were stimulated with a function-triggering L1 antibody or with small agonistic L1 mimetics. These results suggest that L1-70 is important for mitochondrial homeostasis and that its absence contributes to the L1 syndrome phenotypes.  相似文献   

15.
Energy metabolism reprogramming was recently listed as a hallmark of cancer. In this process, the switch from pyruvate kinase isoenzyme type M1 to pyruvate kinase isoenzyme type M2 (PKM2) is believed to play a crucial role. Interestingly, the activity of the active form of PKM2 can efficiently be inhibited by the high-mobility group box 1 (HMGB1) protein, leading to a rapid blockage of glucose-dependent aerobic respiration and cancer cell death. HMGB1 is a member of the HMG protein family. It contains two DNA-binding HMG-box domains and an acidic C-terminal tail capable of positively or negatively modulating its biological properties. In this work, we report that the deletion of the C-terminal tail of HMGB1 increases its activity towards a large panel of cancer cells without affecting the viability of normal immortalized fibroblasts. Moreover, in silico analysis suggests that the truncated form of HMGB1 retains the capacity of the full-length protein to interact with PKM2. However, based on the capacity of the cells to circumvent oxidative phosphorylation inhibition, we were able to identify either a cytotoxic or cytostatic effect of the proteins. Together, our study provides new insights in the characterization of the anticancer activity of HMGB1.  相似文献   

16.
Fourteen silver(I) complexes bearing N-heterocyclic carbene (NHC) ligands were prepared and evaluated for anticancer activity. Some of these were found to exhibit potent antiproliferative activity toward several types of human cancer cell lines, including drug-resistant cell lines, with IC(50) values in the nanomolar range. An initial investigation into the mechanism of cell death induced by this family of silver(I) complexes was carried out. Cell death was shown to result from the activation of apoptosis without involvement of primary necrosis. In HL60 cells, silver-NHCs induce depolarization of the mitochondrial membrane potential (ΔΨ(m)) and likely allow the release of mitochondrial proteins to elicit early apoptosis. This effect is not related to the overproduction of reactive oxygen species (ROS). In addition, apoptosis is not associated with the activation of caspase-3, but is triggered by the translocation of apoptosis-inducing factor (AIF) and caspase-12 from mitochondria and the endoplasmic reticulum, respectively, into the nucleus to promote DNA fragmentation and ultimately cell death. No modification in cell-cycle distribution was observed, indicating that silver-NHCs are not genotoxic. Finally, the use of a fluorescent complex showed that silver-NHCs target mitochondria. Altogether, these results demonstrate that silver-NHCs induce cancer cell death independent of the caspase cascade via the mitochondrial AIF pathway.  相似文献   

17.
Lethal autophagy is a pathway leading to neuronal death caused by transient global ischemia. In this study, we examined the effect of Ginsenoside Rb1 (GRb1) on ischemia/reperfusion-induced autophagic neuronal death and investigated the role of PI3K/Akt. Ischemic neuronal death in vitro was induced by using oxygen glucose deprivation (OGD) in SH-SY5Y cells, and transient global ischemia was produced by using two vessels occlusion in rats. Cellular viability of SH-SY5Y cells was assessed by MTT assay, and CA1 neuronal death was evaluated by Hematoxylin-eosin staining. Autophagic vacuoles were detected by using both fluorescent microscopy in combination with acridine orange (AO) and Monodansylcadaverine (MDC) staining and transmission electronic microscopy. Protein levels of LC3II, Beclin1, total Akt and phosphor-Akt at Ser473 were examined by western blotting analysis. GRb1 inhibited both OGD and transient ischemia-induced neuronal death and mitigated OGD-induced autophagic vacuoles in SH-SY5Y cells. By contrast, PI3K inhibitor LY294002 counteracted the protection of GRb1 against neuronal death caused by either OGD or transient ischemia. LY294002 not only mitigated the up-regulated protein level of phosphor Akt at Ser473 caused by GRb1, but also reversed the inhibitory effect of GRb1 on OGD and transient ischemia-induced elevation in protein levels of LC3II and Beclin1.  相似文献   

18.
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.  相似文献   

19.
The complexity of microglia phenotypes and their related functions compels the continuous study of microglia in diseases animal models. We demonstrated that oxygen-glucose deprivation (OGD) induced rapid, time- and space-dependent phenotypic microglia modifications in CA1 stratum pyramidalis (SP) and stratum radiatum (SR) of rat organotypic hippocampal slices as well as the degeneration of pyramidal neurons, especially in the outer layer of SP. Twenty-four h following OGD, many rod microglia formed trains of elongated cells spanning from the SR throughout the CA1, reaching the SP outer layer where they acquired a round-shaped amoeboid phagocytic head and phagocytosed most of the pyknotic, damaged neurons. NIR-laser treatment, known to preserve neuronal viability after OGD, prevented rod microglia formation. In CA3 SP, pyramidal neurons were less damaged, no rod microglia were found. Thirty-six h after OGD, neuronal damage was more pronounced in SP outer and inner layers of CA1, rod microglia cells were no longer detectable, and most microglia were amoeboid/phagocytic. Damaged neurons, more numerous 36 h after OGD, were phagocytosed by amoeboid microglia in both inner and outer layers of CA1. In response to OGD, microglia can acquire different morphofunctional phenotypes which depend on the time after the insult and on the subregion where microglia are located.  相似文献   

20.
The current anti-cancer treatments are not enough to eradicate tumors, and therefore, new modalities and strategies are still needed. Most tumors generate an inflammatory tumor microenvironment (TME) and maintain the niche for their development. Because of the critical role of inflammation via high-mobility group box 1 (HMGB1)–receptor for advanced glycation end-products (RAGE) signaling pathway in the TME, a novel compound possessing both anti-cancer and anti-inflammatory activities by suppressing the HMGB1-RAGE axis provides an effective strategy for cancer treatment. A recent work of our group found that some anti-cancer 3-styrylchromones have weak anti-inflammatory activities via the suppression of this axis. In this direction, we searched such anti-cancer molecules possessing potent anti-inflammatory activities and discovered 7-methoxy-3-hydroxy-styrylchromone (C6) having dual suppressive activities. Mechanism-of-action studies revealed that C6 inhibited the increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) under the stimulation of HMGB1-RAGE signaling and thereby suppressed cytokine production in macrophage-like RAW264.7 cells. On the other hand, in colorectal cancer HCT116 cells, C6 inhibited the activation of ERK1/2, cyclin-dependent kinase 1, and AKT, down-regulated the protein level of XIAP, and up-regulated pro-apoptotic Bax and caspase-3/7 expression. These alterations are suggested to be involved in the C6-induced suppression of cell cycle/proliferation and initiation of apoptosis in the cancer cells. More importantly, in cancer cells, the treatment of C6 potentiates the anti-cancer effects of DNA-damaging agents. Thus, C6 may be a promising lead for the generation of a novel class of cancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号