首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
3.
Natural melanocortins (MCs) have been used in the successful development of drugs with neuroprotective properties. Here, we studied the behavioral effects and molecular genetic mechanisms of two synthetic MC derivatives-ACTH(4–7)PGP (Semax) and ACTH(6–9)PGP under normal and acute restraint stress (ARS) conditions. Administration of Semax or ACTH(6–9)PGP (100 μg/kg) to rats 30 min before ARS attenuated ARS-induced behavioral alterations. Using high-throughput RNA sequencing (RNA-Seq), we identified 1359 differentially expressed genes (DEGs) in the hippocampus of vehicle-treated rats subjected to ARS, using a cutoff of >1.5 fold change and adjusted p-value (Padj) < 0.05, in samples collected 4.5 h after the ARS. Semax administration produced > 1500 DEGs, whereas ACTH(6–9)PGP administration led to <400 DEGs at 4.5 h after ARS. Nevertheless, ~250 overlapping DEGs were identified, and expression of these DEGs was changed unidirectionally by both peptides under ARS conditions. Modulation of the expression of genes associated with biogenesis, translation of RNA, DNA replication, and immune and nervous system function was produced by both peptides. Furthermore, both peptides upregulated the expression levels of many genes that displayed decreased expression after ARS, and vice versa, the MC peptides downregulated the expression levels of genes that were upregulated by ARS. Consequently, the antistress action of MC peptides may be associated with a correction of gene expression patterns that are disrupted during ARS.  相似文献   

4.
Megakaryocytes are large hematopoietic cells present in the bone marrow cavity, comprising less than 0.1% of all bone marrow cells. Despite their small number, megakaryocytes play important roles in blood coagulation, inflammatory responses, and platelet production. However, little is known about changes in gene expression during megakaryocyte maturation. Here we identified the genes whose expression was changed during K562 leukemia cell differentiation into megakaryocytes using an Affymetrix GeneChip microarray to determine the multifunctionality of megakaryocytes. K562 cells were differentiated into mature megakaryocytes by treatment for 7 days with phorbol 12-myristate 13-acetate, and a microarray was performed using RNA obtained from both types of cells. The expression of 44,629 genes was compared between K562 cells and mature megakaryocytes, and 954 differentially expressed genes (DEGs) were selected based on a p-value < 0.05 and a fold change >2. The DEGs was further functionally classified using five major megakaryocyte function-associated clusters—inflammatory response, angiogenesis, cell migration, extracellular matrix, and secretion. Furthermore, interaction analysis based on the STRING database was used to generate interactions between the proteins translated from the DEGs. This study provides information on the bioinformatics of the DEGs in mature megakaryocytes after K562 cell differentiation.  相似文献   

5.
Identifying effective anti-aging compounds is a cornerstone of modern longevity, aging, and skin-health research. There is considerable evidence of the effectiveness of nutrient signaling regulators such as metformin, resveratrol, and rapamycin in longevity and anti-aging studies; however, their potential protective role in skin aging is controversial. In light of the increasing appearance of phytocannabinoids in beauty products without rigorous research on their rejuvenation efficacy, we decided to investigate the potential role of phytocannabinoids in combination with nutrient signaling regulators in skin rejuvenation. Utilizing CCD-1064Sk skin fibroblasts, the effect of metformin, triacetylresveratrol, and rapamycin combined with phytocannabinoids on cellular viability, functional activity, metabolic function, and nuclear architecture was tested. We found triacetylresveratrol combined with cannabidiol increased the viability of skin fibroblasts (p < 0.0001), restored wound-healing functional activity (p < 0.001), reduced metabolic dysfunction, and ameliorated nuclear eccentricity and circularity in senescent fibroblasts (p < 0.01). Conversely, metformin with or without phytocannabinoids did not show any beneficial effects on functional activity, while rapamycin inhibited cell viability (p < 0.01) and the speed of wound healing (p < 0.001). Therefore, triacetylresveratrol and cannabidiol can be a valuable source of biologically active substances used in aging and more studies using animals to confirm the efficacy of cannabidiol combined with triacetylresveratrol should be performed.  相似文献   

6.
7.
8.
The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) involvement in Alzheimer’s disease (AD) is poorly investigated. We evaluated the in vitro PCSK9 modulation of astrocyte cholesterol metabolism and neuronal cholesterol supplying, which is fundamental for neuronal functions. Moreover, we investigated PCSK9 neurotoxic effects. In human astrocytoma cells, PCSK9 reduced cholesterol content (−20%; p < 0.05), with a greater effect in presence of beta amyloid peptide (Aβ) (−37%; p < 0.01). PCSK9 increased cholesterol synthesis and reduced the uptake of apoE-HDL-derived cholesterol (−36%; p < 0.0001), as well as the LDL receptor (LDLR) and the apoE receptor 2 (ApoER2) expression (−66% and −31%, respectively; p < 0.01). PCSK9 did not modulate ABCA1- and ABCG1-cholesterol efflux, ABCA1 levels, or membrane cholesterol. Conversely, ABCA1 expression and activity, as well as membrane cholesterol, were reduced by Aβ (p < 0.05). In human neuronal cells, PCSK9 reduced apoE-HDL-derived cholesterol uptake (−41%; p < 0.001) and LDLR/apoER2 expression (p < 0.05). Reduced cholesterol internalization occurred also in PCSK9-overexpressing neurons exposed to an astrocyte-conditioned medium (−39%; p < 0.001). PCSK9 reduced neuronal cholesterol content overall (−29%; p < 0.05) and increased the Aβ-induced neurotoxicity (p < 0.0001). Our data revealed an interfering effect of PCSK9, in cooperation with Aβ, on brain cholesterol metabolism leading to neuronal cholesterol reduction, a potentially deleterious effect. PCSK9 also exerted a neurotoxic effect, and thus represents a potential pharmacological target in AD.  相似文献   

9.
We developed a human melanoma model using the HT168-M1 cell line to induce IFN-α2 resistance in vitro (HT168-M1res), which was proven to be maintained in vivo in SCID mice. Comparing the mRNA profile of in vitro cultured HT168-M1res cells to its sensitive counterpart, we found 79 differentially expressed genes (DEGs). We found that only a 13-gene core of the DEGs was stable in vitro and only a 4-gene core was stable in vivo. Using an in silico cohort of IFN-treated melanoma tissues, we validated a differentially expressed 9-gene core of the DEGs. Furthermore, using an in silico cohort of immune checkpoint inhibitor (ICI)-treated melanoma tissues, we tested the predictive power of the DEGs for the response rate. Analysis of the top four upregulated and top four downregulated genes of the DEGs identified WFDC1, EFNA3, DDX10, and PTBP1 as predictive genes, and analysis of the “stable” genes of DEGs for predictive potential of ICI response revealed another 13 genes, out of which CDCA4, SOX4, DEK, and HSPA1B were identified as IFN-regulated genes. Interestingly, the IFN treatment associated genes and the ICI-therapy predictive genes overlapped by three genes: WFDC1, BCAN, and MT2A, suggesting a connection between the two biological processes.  相似文献   

10.
The degeneration of an intervertebral disc (IVD) is a major cause of lower back pain. IVD degeneration is characterized by the abnormal expression of inflammatory cytokines and matrix degradation enzymes secreted by IVD cells. In addition, macrophage-mediated inflammation is strongly associated with IVD degeneration. However, the precise pathomechanisms of macrophage-mediated inflammation in IVD are still unknown. In this study, we developed a microfluidic platform integrated with an electrical stimulation (ES) array to investigate macrophage-mediated inflammation in human nucleus pulposus (NP). This platform provides multiple cocultures of different cell types with ES. We observed macrophage-mediated inflammation and considerable migration properties via upregulated expression of interleukin (IL)-6 (p < 0.001), IL-8 (p < 0.05), matrix metalloproteinase (MMP)-1 (p < 0.05), and MMP-3 (p < 0.05) in human NP cells cocultured with macrophages. We also confirmed the inhibitory effects of ES at 10 μA due to the production of IL-6 (p < 0.05) and IL-8 (p < 0.01) under these conditions. Our findings indicate that ES positively affects degenerative inflammation in diverse diseases. Accordingly, the microfluidic electroceutical platform can serve as a degenerative IVD inflammation in vitro model and provide a therapeutic strategy for electroceuticals.  相似文献   

11.
12.
Salmonella Enteritidis (SE) is a major foodborne pathogen in the United States and one of the most frequently reported Salmonella serotypes globally. Eggs are the most common food product associated with SE infections in humans. The pathogen colonizes the intestinal tract in layers, and migrates to reproductive organs systemically. Since adhesion to and invasion of chicken oviduct epithelial cells (COEC) is critical for SE colonization in reproductive tract, reducing these virulence factors could potentially decrease egg yolk contamination. This study investigated the efficacy of sub-inhibitory concentrations of three plant-derived antimicrobials (PDAs), namely carvacrol, thymol and eugenol in reducing SE adhesion to and invasion of COEC, and survival in chicken macrophages. In addition, the effect of PDAs on SE genes critical for oviduct colonization and macrophage survival was determined using real-time quantitative PCR (RT-qPCR). All PDAs significantly reduced SE adhesion to and invasion of COEC (p < 0.001). The PDAs, except thymol consistently decreased SE survival in macrophages (p < 0.001). RT-qPCR results revealed down-regulation in the expression of genes involved in SE colonization and macrophage survival (p < 0.001). The results indicate that PDAs could potentially be used to control SE colonization in chicken reproductive tract; however, in vivo studies validating these results are warranted.  相似文献   

13.
Carcass yield traits are of considerable economic importance for farm animals, which act as a major contributor to the world’s food supply. Genome-wide association studies (GWASs) have identified many genetic variants associated with carcass yield traits in beef cattle. However, their functions are not effectively illustrated. In this study, we performed an integrative analysis of gene-based GWAS with expression quantitative trait locus (eQTL) analysis to detect candidate genes for carcass yield traits and validate their effects on bovine skeletal muscle satellite cells (BSCs). The gene-based GWAS and cis-eQTL analysis revealed 1780 GWAS and 1538 cis-expression genes. Among them, we identified 153 shared genes that may play important roles in carcass yield traits. Notably, the identified cis-eQTLs of PON3 and PRIM2 were significantly (p < 0.001) enriched in previous GWAS loci for carcass traits. Furthermore, overexpression of PON3 and PRIM2 promoted the BSCs’ proliferation, increased the expression of MYOD and downregulated the expression of MYOG, which indicated that these genes may inhibit myogenic differentiation. In contrast, PON3 and PRIM2 were significantly downregulated during the differentiation of BSCs. These findings suggested that PON3 and PRIM2 may promote the proliferation of BSCs and inhibit them in the pre-differentiation stage. Our results further contribute to the understanding of the molecular mechanisms of carcass yield traits in beef cattle.  相似文献   

14.
During persistent human beta-herpesvirus (HHV) infection, clinical manifestations may not appear. However, the lifelong influence of HHV is often associated with pathological changes in the central nervous system. Herein, we evaluated possible associations between immunoexpression of HHV-6, -7, and cellular immune response across different brain regions. The study aimed to explore HHV-6, -7 infection within the cortical lobes in cases of unspecified encephalopathy (UEP) and nonpathological conditions. We confirmed the presence of viral DNA by nPCR and viral antigens by immunohistochemistry. Overall, we have shown a significant increase (p < 0.001) of HHV antigen expression, especially HHV-7 in the temporal gray matter. Although HHV-infected neurons were found notably in the case of HHV-7, our observations suggest that higher (p < 0.001) cell tropism is associated with glial and endothelial cells in both UEP group and controls. HHV-6, predominantly detected in oligodendrocytes (p < 0.001), and HHV-7, predominantly detected in both astrocytes and oligodendrocytes (p < 0.001), exhibit varying effects on neural homeostasis. This indicates a high number (p < 0.001) of activated microglia observed in the temporal lobe in the UEP group. The question remains of whether human HHV contributes to neurological diseases or are markers for some aspect of the disease process.  相似文献   

15.
The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.  相似文献   

16.
Recently, much attention has been paid to the COVID-19 pandemic. Yet bacterial resistance to antibiotics remains a serious and unresolved public health problem that kills hundreds of thousands of people annually, being an insidious and silent pandemic. To contain the spreading of the SARS-CoV-2 virus, populations confined and tightened hygiene measures. We performed this study with computer simulations and by using mobility data of mobile phones from Google in the region of Lisbon, Portugal, comprising 3.7 million people during two different lockdown periods, scenarios of 40 and 60% mobility reduction. In the simulations, we assumed that the network of physical contact between people is that of a small world and computed the antibiotic resistance in human microbiomes after 180 days in the simulation. Our simulations show that reducing human contacts drives a reduction in the diversity of antibiotic resistance genes in human microbiomes. Kruskal–Wallis and Dunn’s pairwise tests show very strong evidence (p < 0.000, adjusted using the Bonferroni correction) of a difference between the four confinement regimes. The proportion of variability in the ranked dependent variable accounted for by the confinement variable was η2 = 0.148, indicating a large effect of confinement on the diversity of antibiotic resistance. We have shown that confinement and hygienic measures, in addition to reducing the spread of pathogenic bacteria in a human network, also reduce resistance and the need to use antibiotics.  相似文献   

17.
18.
19.
20.
Hy-Line Brown chickens’ health is closely related to poultry productivity and it is mainly maintained by the immune system, healthy intestinal function, and microflora of chicken. Polysaccharides are biological macromolecules with a variety of activities that can be used as a potential prebiotic to improve poultry health. In this experiment, the function of Alhagi honey polysaccharides (AH) as an immunomodulator on the chicken was investigated. All chicken (120) were randomly distributed to four groups (five replicas/group, six hens/replica). A total of 0.5 mL water was taken orally by the chicken in control group. AH (0.5 mL) in different concentrations (three dosages, 0.3 g/kg, 0.6 g/k, and 1.2 g/kg) were used for the AH-0.3 g/kg, AH-0.6 g/k, and AH-1.2 g/kg group, respectively. The results showed that the growth performance of the chickens and the index of immune organs (the weight of immune organs/the body weight) were enhanced significantly after being AH-treated (p < 0.05). The content of sIgA and cytokines was upregulated remarkably in the intestine after being AH-treated (p < 0.05). The AH treatment significantly enhanced the intestinal epithelial barrier (p < 0.05). Moreover, the percentage of CD4+ and CD8+ T cells in the ileum, spleen, and serum were obviously upscaled (p < 0.05). In addition, the AH treatment significantly enhanced the production of short chain fatty acids (SCFAs) and improved the structure of gut microbiota (p < 0.05). In conclusion, we found that AH-1.2g/kg was the best dosage to improve the chicken’s health, and these data demonstrated that AH could be used as a potential tool to enhance growth performance through improving intestine function, immunity, and gut microbiome in chicken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号