首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A small-diameter vascular graft (inner diameter 4 mm) was fabricated from polyurethane (PU) and poly(ethylene glycol) (PEG) solutions by blend electrospinning technology. The fiber diameter decreased from 1023 ± 185 nm to 394 ± 106 nm with the increasing content of PEG in electrospinning solutions. The hybrid PU/PEG scaffolds showed randomly nanofibrous morphology, high porosity and well-interconnected porous structure. The hydrophilicity of these scaffolds had been improved significantly with the increasing contents of PEG. The mechanical properties of electrospun hybrid PU/PEG scaffolds were obviously different from that of PU scaffold, which was caused by plasticizing or hardening effect imparted by PEG composition. Under hydrated state, the hybrid PU/PEG scaffolds demonstrated low mechanical performance due to the hydrophilic property of materials. Compared with dry PU/PEG scaffolds with the same content of PEG, the tensile strength and elastic modulus of hydrated PU/PEG scaffolds decreased significantly, while the elongation at break increased. The hybrid PU/PEG scaffolds demonstrated a lower possibility of thrombi formation than blank PU scaffold in platelet adhesion test. The hemolysis assay illustrated that all scaffolds could act as blood contacting materials. To investigate further in vitro cytocompatibility, HUVECs were seeded on the scaffolds and cultured over 14 days. The cells could attach and proliferate well on the hybrid scaffolds than blank PU scaffold, and form a cell monolayer fully covering on the PU/PEG (80/20) hybrid scaffold surface. The results demonstrated that the electrospun hybrid PU/PEG tubular scaffolds possessed the special capacity with excellent hemocompatibility while simultaneously supporting extensive endothelialization with the 20 and 30% content of PEG in hybrid scaffolds.  相似文献   

2.
3.
骨组织工程多孔支架材料性质及制备技术   总被引:2,自引:0,他引:2  
多孔性生物可降解支架的选择和制备是组织工程技术成功运用的关键。从骨架的材料要求、常用的骨架材料、骨架的制备技术等几个方面对组织工程和生物降解支架的研究进行了综述 ,并对该研究的前景进行了展望  相似文献   

4.
Scaffolds are of great importance for tissue engineering because they enable the production of functional living implants out of cells obtained from cell culture. These scaffolds require individual external shape and well defined internal structure with interconnected porosity. The problem of the fabrication of prototypes from computer assisted design (CAD) data is well known in automotive industry. Rapid prototyping (RP) techniques are able to produce such parts. Some RP techniques exist for hard tissue implants. Soft tissue scaffolds need a hydrogel material. No biofunctional and cell compatible processing for hydrogels exists in the area of RP. Therefore, a new rapid prototyping (RP) technology was developed at the Freiburg Materials Research Center to meet the demands for desktop fabrication of hydrogels. A key feature of this RP technology is the three-dimensional dispensing of liquids and pastes in liquid media. The porosity of the scaffold is calculated and an example of the data conversion from a volume model to the plotting path control is demonstrated. The versatile applications of the new hydrogel scaffolds are discussed, including especially its potential for tissue engineering.  相似文献   

5.
In the presented paper authors describe a method for bone scaffolds fabrication. The technique is based on the agglomeration of chitosan microspheres. The fabrication process is complex and consists of a few steps: chitosan spheres extrusion, scaffold formation by compression followed by the spheres agglomeration and bonding with cross-linking agent (STPP, sodium tripolyphosphate). The described method allows manufacturing of porous materials with controllable shape, pore size distribution and their interconnectivity. In this technique 3D scaffold porosity can be regulated by altering spheres diameter. Authors studied influence of cross-linker concentrations and time of cross-linking process on the scaffold morphology, mechanical properties, enzymatic degradation rate (in the presence of lysozyme) and human osteoblasts response. Surface morphology and topography were evaluated by SEM. Porosity and pore interconnectivity were observed via μCT scanning. Mechanical tests showed that chitosan scaffolds perform compression characteristic (Young Modulus) similar to natural bone. Cytotoxicity established by XTT assay confirmed that most of the developed composite materials do not show toxic properties. Osteoblast adhesion and morphology were analyzed by SEM and optical microscopy.  相似文献   

6.
Skeletal loss and bone deficiencies are a major worldwide problem with over 600,000 procedures performed in the US alone annually, making bone one of the most transplanted tissues, second to blood only. Bone is a composite tissue composed of organic matrix, inorganic bone mineral, and water. Structurally bone is organized into two distinct types: trabecular (or cancellous) and cortical (or compact) bones. Trabecular bone is characterized by an extensive interconnected network of pores. Cortical bone is composed of tightly packed units, called osteons, oriented parallel along to the axis of the bone. While the majority of scaffolds attempt to replicate the structure of the trabecular bone, fewer attempts have been made to create scaffolds to mimic the structure of cortical bone. The aim of this study was to develop a technique to fabricate scaffolds that mimic the organization of an osteon, the structural unit of cortical bone. We successfully built a rotating stage for PGA fibers and utilized it for collecting electrospun nanofibers and creating scaffolds. Resulting scaffolds consisted of concentric layers of electrospun PLLA or gelatin/PLLA nanofibers wrapped around PGA microfiber core with diameters that ranged from 200 to 600 μm. Scaffolds were mineralized by incubation in 10× simulated body fluid, and scaffolds composed of 10%gelatin/PLLA had significantly higher amounts of calcium phosphate. The electrospun scaffolds also supported cellular attachment and proliferation of MC3T3 cells over the period of 28 days.  相似文献   

7.
Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and needs in vascular tissue regeneration. In this study, four different kinds of native proteins namely collagen, gelatin, fibrinogen, and bovine serum albumin were incorporated with polyurethane (PU) and electropsun to obtain composite PU/protein nanofibers. SEM studies showed that the fiber diameters of PU/protein scaffolds ranged from 245 to 273 nm, mimicking the nanoscale dimensions of native ECM. Human aortic smooth muscle cells (SMCs) were cultured on the electrospun nanofibers, and the ability of the cells to proliferate on different scaffolds was evaluated via a cell proliferation assay. Cell proliferation on PU/Coll nanofibers was found the highest compared to other electrospun scaffolds and it was 42 % higher than the proliferation on PU/Fib nanofibers after 12 days of cell culture. The cell–biomaterial interaction studies by SEM confirmed that SMCs adhered to PU/Coll and PU/Gel nanofibers, with high cell substrate coverage, and both the scaffolds promoted cell alignment. The functionality of the cells was further demonstrated by immunocytochemical analysis, where the SMCs on PU/Coll and PU/Gel nanofibers expressed higher density of SMC proteins such as alpha smooth muscle actin and smooth muscle myosin heavy chain. Cells expressed biological markers of SMCs including aligned spindle-like morphology on both PU/Coll and PU/Gel with actin filament organizations, better than PU/Fib and PU/BSA scaffolds. Our studies demonstrate the potential of randomly oriented elastomeric composite scaffolds for engineering of vascular tissues causing cell alignment.  相似文献   

8.
9.
In the field of nerve tissue engineering, nanofibrous scaffolds could be a promising candidate when they are incorporated with electrical cues. Unique physico-chemical properties of gold nanoparticles (AuNPs) make them an appropriate component for increasing the conductivity of scaffolds to enhance the electrical signal transfer between neural cells. The aim of this study was fabrication of AuNPs-doped nanofibrous scaffolds for peripheral nerve tissue engineering. Polycaprolactone (PCL)/chitosan mixtures with different concentrations of chitosan (0.5, 1 and 1.5) were electrospun to obtain nanofibrous scaffolds. AuNPs were synthesized by the reduction of HAuCl4 using chitosan as a reducing/stabilizing agent. A uniform distribution of AuNPs with spherical shape was achieved throughout the PCL/chitosan matrix. The UV–Vis spectrum revealed that the amount of gold ions absorbed by nanofibrous scaffolds is in direct relationship with their chitosan content. Evaluation of electrical property showed that inclusion of AuNPs significantly enhanced the conductivity of scaffolds. Finally, after 5 days of culture, biological response of Schwann cells on the AuNPs-doped scaffolds was superior to that on as-prepared scaffolds in terms of improved cell attachment and higher proliferation. It can be concluded that the prepared AuNPs-doped scaffolds can be used to promote peripheral nerve regeneration.  相似文献   

10.
In this study, two techniques, namely electrospinning and needle-punching processes, were used to fabricate bioactive polycaprolactone/hydroxyapatite scaffolds with a final bilayer nano-/micro-fibrous porous structure. A hybrid scaffold was fabricated to combine the beneficial properties of nanofibers and microfibers and to create a three-dimensional porous structure (which is usually very difficult to produce using electrospinning technology only). The first part of this work focused on determining the conditions necessary to fabricate nano- and micro-fibrous components of scaffold layers. A characterization of scaffold components, with respect to their morphology, fiber diameter, pore size, wettability, chemical composition and mechanical properties, was performed. Then, the same process parameters were applied to produce a hybrid bilayer scaffold by electrospinning the nanofibers directly onto the micro-fibrous nonwovens obtained in a traditional mechanical needle-punching process. In the second part, the bioactive character of a hybrid nano-/micro-fibrous scaffold in simulated body fluid (SBF) was assessed. Spherical calcium phosphate was precipitated onto the nano-/micro-fibrous scaffold surface proving its bioactivity.  相似文献   

11.
Polycaprolactone/hydroxyapatite (PCL/HA) composites were prepared by in situ generation of HA in the polymer solution starting from the precursors calcium nitrate tetrahydrate and ammonium dihydrogen phosphate via sol–gel process. Highly interconnected porosity was achieved by means of the salt-leaching technique using a mixture of sodium chloride and sodium bicarbonate as porogens. Structure and morphology of the PCL/HA composites were investigated by scanning electron microscopy, and mechanical properties were determined by means of tensile and compression tests. The possibility to employ the developed composites as scaffolds for bone tissue regeneration was assessed by cytotoxicity test of the PCL/HA composites extracts and cell adhesion and proliferation in vitro studies.  相似文献   

12.
It is a severe challenge to construct 3D scaffolds which hold controllable pore structure and similar morphology of the natural extracellular matrix(ECM).In this study,a compound technology is proposed by combining the 3D bioprinting and electrospinning process to fabricate 3D scaffolds,which are composed by orthogonal array gel microfibers in a grid-like arrangement and intercalated by a nonwoven structure with randomly distributed polycaprolactone(PCL) nanofibers.Human adiposederived stem cells(hASCs) are seeded on the hierarchical scaffold and cultured 21 d for in vitro study.The results of cells culturing show that the microfibers structure with controlled pores can allow the easy entrance of cells and the efficient diffusion of nutrients,and the nanofiber webs layered in the scaffold can significantly improve initial cell attachment and proliferation.The present work demonstrates that the hierarchical PCL/gel scaffolds consisting of controllable 3D architecture with interconnected pores and biomimetic nanofiber structures resembling the ECM can be designed and fabricated by the combination of 3D bioprinting and electrospinning to improve biological performance in tissue engineering applications.  相似文献   

13.
Currently, one of the main drawbacks of using poly(ε-caprolactone) in the biomedical and pharmaceutical fields is represented by its low biodegradation rate. To overcome this limitation, electrospinning of PCL blended with a water-soluble poly(N-vinyl-2-pyrrolidone) was used to fabricate scaffolds with tunable fiber surface morphology and controllable degradation rates. Electrospun scaffolds revealed a highly immiscible blend state. The incorporated PVP phase was dispersed as inclusions within the electrospun fibers, and then easily extracted by immersing them in cell culture medium, exhibiting nanoporosity on the fiber surface. As a striking result, nanoporosity facilitated not only fiber biodegradation rates, but also improved cell attachment and spreading on the blend electrospun scaffolds. The present findings demonstrate that simultaneous electrospinning technique for PCL with water-soluble PVP provides important insights for successful tuning biodegradation rate for the PCL electrospun scaffolds but not limited to expand other high valuable biocompatible polymers for the future biomedical applications, ranging from tissue regeneration to controlled drug delivery.  相似文献   

14.
Bioactive glasses (BaG) can bind to human bone tissues and have been used in many biomedical applications for the last 30 years. However they usually are weak and brittle. On the other hand, composites that combine polymers and BaG are of particular interest, since they often show an excellent balance between stiffness and toughness. Bioactive glass-poly(vinyl alcohol) foams to be used in tissue engineering applications were previously developed by our group, using the sol-gel route. Since bioactive glass-polymer composite derived from the sol-gel process cannot be submitted to thermal treatments at high temperatures (above 400 degrees C), they usually have unreacted species that can cause cytotoxicity. This work reports a technique for stabilizing the sol-gel derived bioactive glass/poly(vinyl alcohol) hybrids by using glutaraldehyde (GA), NH(4)OH solutions and a blocking solution containing bovine serum albumin. PVA/BaG/GA hybrids were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM/EDX) analyses. Moreover, MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) biocompatibility and cytotoxicity assays were also conducted. The hybrids exhibited pore size varying from 80 to 820 mum. After treatments, no major changes in the pore structure were observed and high levels of cell viability were obtained.  相似文献   

15.
β-Tricalcium phosphate (β-TCP) particles with a size of ~ 200 nm were blended with fibrinogen and thrombin to obtain an injectable composite scaffold. Clotting time of the composite systems was compared with the fibrin gel control. Results show that incorporation of the β-TCP particles could pronouncedly prolong the clotting time, and endow the resulted scaffold with a denser microstructure. The β-TCP particles were evenly distributed in the fibrin gel, with an increased particle size in a scaffold of a larger amount of the particles. Elastic modulus of the scaffold was increased with the increase of β-TCP particles' content too. In vitro human mesenchymal stem cell culture showed that both cytoviability and cell number were increased along with increase of the β-TCP particle amount. At a 1.5% β-TCP particle, the highest activity of alkaline phosphatase was measured. Since the fibrin gel itself is already very biocompatible, compounding with the β-TCP particles may enable the resulted scaffold more suitable for bone regeneration, with the preserved merit of potential injection in situ.  相似文献   

16.
Microsphere integrated gelatin-siloxane hybrid scaffolds were successfully synthesized by using a combined sol-gel processing, post-gelation soaking and freeze-drying process. A bone-like apatite layer was able to form in the Ca2+-containing porous hybrids upon soaking in a simulated body fluid (SBF) up to 1 day. The rate of gentamicin sulfate (GS) release from the GS-loaded gelatin-siloxane hybrid microsphere became constant after a 4 h burst. The antibacterial activity was assessed by the agar diffusion test (ADT) and the bactericidal effect test. It is evident that the as-synthesized porous scaffolds have excellent bioactivity and antibacterial activity, and may be favorable in bone tissue engineering.  相似文献   

17.
Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.  相似文献   

18.
Hierarchically structured porous scaffolds based on nanocrystalline carbonated hydroxyapatite reinforced hydrogels (Gellan or Agarose) have been tested as protein release matrices while evaluation their in vitro biocompatibility. The shaping method used develops under mild conditions thus allowing the incorporation of labile substances. The Bovine Serum Albumin (BSA), employed as a model protein, has been included by using two drug-inclusion strategies: during the scaffolds preparation (in situ process) or by injection of an aqueous protein solution within (ex situ process). The release studies showed a more controlled BSA delivery when the protein was incorporated during the scaffold preparation when compared to that where the protein has been loaded in a second step (ex situ process). The release patterns can also be tailored as a function of the scaffold composition (ceramic/polysaccharide ratio and nature) as well as the drying technology employed. Biocompatibility studies demonstrated that these scaffolds, regardless of the composition, allow the culture of osteoblasts on and around the material, thus supporting the potential use of these biomaterials for bone tissue engineering.  相似文献   

19.
This work describes a new methodology to produce bioactive coatings on the surface of starch-based biodegradable polymers or other degradable polymeric biomaterials. As an alternative to the more typical bioactive glass precursors, a calcium silicate gel is being employed as a nucleating agent, for inducing the biomimetic formation of a calcium-phosphate (Ca-P) layer. The method has the advantage of being able to coat efficiently both compact materials and porous 3-D architectures aimed at being used on tissue replacement applications and as bone tissue engineering scaffolds. This treatment is also very effective in reducing the incubation periods, being possible to observe the formation of an apatite-like layer, only after 12 h of immersion in a simulated body fluid (SBF). The apatite coatings formed on the compact surfaces or along the fibres of a fibre mesh scaffold structure made from a starch/polycrapolactone blend (SPCL) were analysed and compared in terms of morphology, chemical composition and structure. After the first days of SBF immersion, the apatite-like films exhibit the typical cauliflower like morphology. With increasing immersion times, these films exhibited a partially amorphous nature and the Ca/P ratios became very closer to the value attributed to hydroxyapatite (1.67). It was possible to fully pre-mineralise the SPCL scaffolds and simultaneously to keep the porous morphology of the fibre-bonded scaffold.  相似文献   

20.
In recent decades, the use of microparticle-mediated drug delivery is widely applied in the field of biomedical application. Here, we report the new dressing material with ciprofloxacin-loaded chitosan microparticle (CMP) impregnated in chitosan (CH) and poly(vinyl alcohol) (PVA) scaffold for effective delivery of drug in a sustained manner to the wound site. Moreover, the peculiar physiochemical and structural properties of the CH–CMP scaffold has proved better tensile strength and excellent swelling to achieve 82% of drug release. In vitro biocompatibility was done for both scaffold using NIH 3T3 fibroblasts and human keratinocytes (HaCaT) cell lines. In vitro fluorescent activity showed distinct biocompatibility with good cell adhesion and proliferation. However, the CH–CMP scaffold showed best result to act as promising biomaterial in effective drug delivery in tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号