首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
J.S. Nunes  F.A.O. Cabral  M.R. Pereira 《Polymer》2006,47(22):7646-7652
Magnetic particles are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. In this work, latices based on magnetite covered by poly(ethyl methacrylate-co-methacrylic acid) were obtained via miniemulsion polymerization. The resultant latices had particles in the nanometric range and presented a pronounced superparamagnetic behavior.  相似文献   

3.
Photografting reaction of poly(ethylene glycol) (PEG) onto poly(3-hydroxybutyrate) (PHB) by UV-irradiation was successfully conducted. The surface properties of PHB grafting copolymers such as hydrophilicity, enzymatic biodegradation and mechanical properties were investigated. The grafting copolymers showed better hydrophilic property and faster biodegradation rate than that of blank PHB in an enzymatic environmental medium, at the same time, its bulk properties such as mechanical properties were also improved in the certain content of grafting PEG. Varying the PEG grafting content, a series of copolymer with different biodegradation rate, which could fit the future application, can be attained. These photografting copolymers may be useful in some field, such as control-release delivery and tissue engineering, etc.  相似文献   

4.
M El Fray  V Altstädt 《Polymer》2003,44(16):4635-4642
Fatigue properties of poly(aliphatic/aromatic-ester) (PED) multiblock copolymers were evaluated based on the hysteresis measurement method. This method allows the digitalization of the hysteresis loop and beside the determination of stress and strain-related parameters, stored energy, lost energy, damping and dynamic creep behaviour can be determined. The correlation between hard/soft segment concentration of PED copolymers, and fundamental parameters, which derived during the cyclic loading (using stepwise increasing load testing, SILT), has indicated a good load-carrying performance of polymers containing a high amount of the hard phase. PED copolymers compare very well with commercially available poly(ester-ethers) and show a much better performance than poly(ester-urethanes) when samples are loaded at the same fatigue stress level relative to their ultimate tensile strength. Softer PEDs and poly(ether-urethane) copolymer show much higher values of dynamic modulus than chemically cross-linked silicone elastomer. Therefore, these multiblock copolymers can be considered as good candidates for applications where materials are subjected to oscillatory deformations (for example passive flexor tendon reconstruction).  相似文献   

5.
This review covers the LCST behavior of two important polymer classes in aqueous solution, namely poly(2-oxazoline)s and systems whose thermo-responsiveness is based on their structural similarity to poly(ethylene oxide) (PEO). In order to elucidate the progress that has been made in the design of new thermo-responsive copolymers, experimental data that were obtained by different research groups are compared in detail. Copolymerization with hydrophilic or hydrophobic comonomers represents a suitable method to tune the coil to globule transition temperature of several homopolymers, and incorporation of other monomers provided further interesting features, such as pH responsiveness or sensing properties. In addition, living and controlled polymerization techniques enabled access to defined end groups and more advanced polymer architectures, such as graft copolymers or double responsive block copolymers. The effect of such structural variations on the temperature responsive behavior of the (co)polymers is discussed in detail.  相似文献   

6.
Jeremy M. Rathfon 《Polymer》2008,49(7):1761-1769
Polymers exhibiting a thermoresponsive, lower critical solution temperature (LCST) phase transition have proven to be useful for many applications as “smart” or “intelligent” materials. A series of poly(N-isopropylmethacrylamide) (PNIPMAM) polymer, poly(N-isopropylmethacrylamide)-b-poly(acrylic acid) (PNIPMAM-b-PAA) diblock, and poly(acrylic acid)-b-poly(N-isopropylmethacrylamide)-b-poly(acrylic acid) (PAA-b-PNIPMAM-b-AA) triblock copolymer samples were synthesized via ATRP. A facile post-functionalization route was developed that uses an activated ester functionality to convert poly(N-methacryloxysuccinimide) (PMASI) blocks to LCST capable polyacrylamide, while poly(t-butyl acrylate) (PtBA) blocks were converted to water-soluble poly(acrylic acid) (PAA). The post-functionalization was monitored via 1H NMR and ATR-FTIR. The aqueous solution properties were explored and the PNIPMAM polymers were shown to have a LCST phase transition varying from 35 to 60 °C. The ability to synthesize block copolymers that are thermoresponsive and water-soluble will be of great benefit for broader applications in drug delivery, bioengineering, and nanotechnology.  相似文献   

7.
In this study, we have prepared poly([R,S ]-β-hydroxybutyrate) (P([R,S ]-β-HB) or PHB) from [R ,S]-β-butyrolactone ([ R,S]-β-BL), using different aluminoxane catalyst systems (triethylaluminium/water, triisobutylaluminium/water, trioctylaluminium/water and tetraisobutyldialuminoxane/water). By varying the ratio of catalyst to water and using a method of fractionation of polymers, PHB with different isotactic diad fractions (i) (from 0.41 to 0.72) and crystallinities were obtained. Copolymers poly(butyrolactone-co-caprolactone) (P(BL-co-CL)) and poly(butyrolactone-co-valerolactone) (P(BL-co-VL)) have also been synthesized from the ring-opening copolymerization of [ R,S]-β-BL with either ε-caprolactone (CL) or δ-valerolactone (VL) using tetraisobutyldialuminoxane (TIBAO) catalyst. The enzymatic degradability of these polymers was studied in aerobic and anaerobic media. The objective of this work was to determine the influence of the tacticity and crystallinity of the polymers on their degree of biodegradation and on their initial degradation rate. It was shown that the degradation rate measured for bacterial PHB 100% [R] was the highest and the degree of aerobic biodegradation reached after 36 days was around 94%. A 40–50% biodegradation was obtained for synthetic PHB, highly isotactic and predominantly syndiotactic. The non-crystalline and atactic PHB synthesized from TIBAO catalyst had a very high degree of biodegradation of around 88%. This result may suggest that not only are the [R ]-BL units hydrolysed but also the [S ]-BL units. The influence of the crystallinity on the initial degradation rate was observed for the copolymers P(BL-co-CL) and P(BL-co -VL) of various feed ratios. All these copolymers synthesized from TIBAO catalyst, exhibit a high degree of biodegradation of around 85% except for copolymers containing a very high portion of unsubstituted units, CL or VL. The anaerobic biodegradation of PHB and copolymers P(BL-co -CL) is much lower than the aerobic biodegradation, as are the initial rates, even for bacterial P([R ]-HB). © 1999 Society of Chemical Industry  相似文献   

8.
Yan ChenGuang Yang  Qun Chen 《Polymer》2002,43(7):2095-2099
The noncrystalline structures of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymers were studied by variable temperature solid-state wide-line 1H NMR and solid-state high-resolution 13C NMR spectroscopy. It is found that at room temperature there exists a rich and rigid component in the noncrystalline region of PHB and PHBV. The content of this component decreases with the increase in 3-hydroxyvalerate content in PHBV and with the increase in temperature. The brittleness of PHB may be partly attributed to the rigidness of the noncrystalline region at room temperature, while the improvement of the properties of PHBV may come from the enhanced mobility of the noncrystalline region.  相似文献   

9.
Kerh Li Liu  Suat Hong Goh 《Polymer》2008,49(3):732-741
Well-defined biodegradable amphiphilic triblock copolymers consisting of atactic poly[(R,S)-3-hydroxybutyrate] (PHB) and poly(ethylene glycol) (PEG) as the side hydrophobic block and middle hydrophilic block were synthesized via ring opening polymerization of (R,S)-β-butyrolactone from PEG macroinitiators and characterized using NMR, GPC, FT-IR, XRD, DSC and TG analyses. The controlled synthesis was made possible by the facile synthesis of pure PEG macroinitiators through a TEMPO-mediated oxidation. Constituting 40-70 wt% of the copolymer content, PHB blocks grown were amorphous while PEG formed crystalline phase when segment was sufficiently long. While hindering PEG crystallization, atactic PHB mixed well with amorphous PEG to give single Tg in all the copolymers. The copolymers exhibited two-step thermal degradation profile starting with PHB degradation from 210 to 300 °C, then PEG from 350 to 450 °C.  相似文献   

10.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

11.
Zengqian Shi 《Polymer》2006,47(24):8073-8079
In recent years, polymer microcapsules have attracted more and more attention because of their specific properties and applications in encapsulation and drug delivery. Great effort has been made to investigate the preparation methods, structure controls as well as the property designs for the polymer microcapsules. In this work, we reported an effective route for the preparation of poly(β-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) hollow spheres with controlled wall thickness, which involves the graft polymerization of the biodegradable polymers from the surface of silica spheres followed by removing the template cores. Nuclear magnetic resonance spectroscopy (NMR), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscope (TEM) have been used to prove the structure of the hollow sphere and the intermediates. The result reveals that with the increase of reaction time the wall thickness of the hollow sphere will increase gradually.  相似文献   

12.
Katrien V. Bernaerts 《Polymer》2005,46(19):8469-8482
A new set of block copolymers containing poly(methyl vinyl ether) (PMVE) on one hand and poly(tert-butyl acrylate), poly(acrylic acid), poly(methyl acrylate) or polystyrene on the other hand, have been prepared by the use of a novel dual initiator 2-bromo-(3,3-diethoxy-propyl)-2-methylpropanoate. The dual initiator has been applied in a sequential process to prepare well-defined block copolymers of poly(methyl vinyl ether) (PMVE) and hydrolizable poly(tert-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA) or polystyrene (PS) by living cationic polymerization and atom transfer radical polymerization (ATRP), respectively. In a first step, the Br and acetal end groups of the dual initiator have been used to generate well-defined homopolymers by ATRP (resulting in polymers with remaining acetal function) and living cationic polymerization (PMVE with pendant Br end group), respectively. In a second step, those acetal functionalized polymers and PMVE-Br homopolymers have been used as macroinitiators for the preparation of PMVE-containing block copolymers. After hydrolysis of the tert-butyl groups in the PMVE-b-ptBA block copolymer, PMVE-b-poly(acrylic acid) (PMVE-b-PAA) is obtained. Chain extension of the AB diblock copolymers by ATRP gives rise to ABC triblock copolymers. The polymers have been characterized by MALDI-TOF, GPC and 1H NMR.  相似文献   

13.
Novel poly(oxyethylene)/poly(caprolactone) POE/PCL copolymers were synthesized by step growth polymerization of poly(ε-caprolactone) diols and poly(ethylene glycol) diacids using dicyclohexylcarbodiimide as coupling agent. The reaction was performed at room temperature and yielded multiblock copolymers with predetermined POE and PCL block lengths. The resulting copolymers were characterized by various analytical techniques including SEC, IR, 1H NMR, DSC and X-ray diffractometry. Data showed that the properties of these polymers can be modulated by adjusting the chain lengths of the macromonomers. In particular, one or two crystalline structures can exist within the copolymers of various crystallinities. © 1998 SCI.  相似文献   

14.
Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a 1H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes and their particle sizes were less than 100 nm. In a 1H-NMR study in D2O, specific peaks of PEG solely appeared while peaks of PHO disappeared, indicating that nanoparticles have core-shell structures. The higher M.W. of PEG decreased loading efficiency and particle size. The higher drug feeding increased drug contents and average size of nanoparticles. In the drug release study, the higher M.W. of PEG block induced the acceleration of drug release rate. The increase in drug contents induced the slow release rate of drug. In an antitumor activity study in vitro, paclitaxel nanoparticles have practically similar anti-proliferation activity against HCT116 human colon carcinoma cells. In an in vivo animal study using HCT116 colon carcinoma cell-bearing mice, paclitaxel nanoparticles have enhanced antitumor activity compared to paclitaxel itself. Therefore, paclitaxel-incorporated nanoparticles of PHO/PEG block copolymer are a promising vehicle for antitumor drug delivery.  相似文献   

15.
Amphiphilic block copolymers have been the subject of great scientific interests due to their applications in various fields including nano drug delivery. Three amphiphilic block copolymers based on poly(ε-caprolactone) as a hydrophobic segment and methoxy poly(ethylene oxide) ( as a hydrophilic part were synthesized by the ring-opening polymerization of ε-caprolactone using MeO-PEO5K as macroinitiator by varying initial feed ratios. The synthesized polymers were further explored for their drug delivery potential using clotrimazole as model hydrophobic drug. Drug-loaded micelles were characterized for shape, size, drug encapsulation efficiency, in vitro release, and thermal stability using atomic force microscope, zetasizer, UV–visible spectrophotometry, FTIR, differential scanning calorimetry, and thermogravimetric analysis. Clotrimazole loaded in micelles were also investigated for its antifungal activity through an in vitro assay and scanning electron microscopy. The antifungal activity of drug increased significantly by delivering through polymeric micelles. Current study provides insight into different factors that can be maneuvered to achieve a variety of desired properties of micelles for improved therapeutic efficacy of drugs like clotrimazole. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47769.  相似文献   

16.
刷状聚乙二醇(PEG)两亲性共聚物具有独特的性能和良好的应用前景,日益受到人们的重视。本文综述了刷状PEG两亲性共聚物的两种合成策略,即大分子单体法和主链-侧链偶联法,它们主要通过离子聚合、自由基聚合、开环聚合及各种耦合反应等实现。举例分析了这些方法的优缺点,并侧重于聚酯等生物可降解材料形成的刷状PEG共聚物。比较了直链PEG和刷状PEG共聚物胶束表面形态,简要分析了刷状PEG结构对纳米颗粒药物输送性能的影响,指出刷状PEG结构能延长体内循环时间从而提高药物疗效,但有效的合成方法及其胶束的体内外性能还需要更深入的探索。  相似文献   

17.
A series of poly(lactide) (PLA)-based supramolecular polymers based on linear PLLA-b-PCL-b-PLLA triblock copolymers (PLLA, poly(l -lactide); PCL, poly(ε-caprolactone)) or/and three-arm star (PCL-b-PDLA)3 block copolymers (PDLA, poly(d -lactide)) were synthesized. The effects of the structure and composition on crystal structure, crystallization behavior, spherulite morphology and mechanical properties of the synthesized supramolecular polymers were investigated. The results of DSC and polarized optical microscopy indicated that the supramolecular polymer exhibited poor crystallization ability with respect to PCL/PLA block copolymer, and the crystallinity of the supramolecular polymer with alternating PCL/PLA multiblock structure was stronger than that with similar crosslinked network structure. The presence of molten PCL blocks disturbed the orientation of lamellae, forming spherulites with feather-like dendrites, and ring-banded spherulites were observed as the molecular weight of the PLA blocks increased. The results of tensile tests demonstrated that supramolecular polymers with larger molecular weight of PLA blocks showed the pronounced ductile fracture. On this basis, stereocomplexed supramolecular polymers were also synthesized, and it was found that the stereocomplex crystals had a significant impact on the crystallization and mechanical properties of the supramolecular polymers. Therefore, in this work a novel technique for manufacturing toughened PLA-based material and tuning its performances is proposed, which may promote the application of PLA-based materials in more fields. © 2022 Society of Industrial Chemistry.  相似文献   

18.
Linear and star‐shaped poly(ε‐caprolactone) (PCL) block copolymers containing poly(meth)acrylate segments with glycidyl, 2‐(trimethylsilyloxy)ethyl and tert‐butyl pendant groups were synthesized using mono‐, di‐ and trifunctional PCL macroinitiators and appropriate (meth)acrylate monomers by controlled radical polymerization. The well‐defined structures with narrow molecular weight distributions indicate the coexistence of semi‐crystalline PCL and amorphous poly(meth)acrylic phases. The hydrophobic nature of the block copolymers can be easily converted to amphiphilic, which with biodegradable and biocompatible PCL segments are promising as polymeric carriers in drug delivery systems. © 2012 Society of Chemical Industry  相似文献   

19.
Radical copolymerization of N-isopropylacrylamide (NIPA) with N-vinyl-2-pyrrolidone (VP) were carried out with 2,2′-azobisisobutyronitrile (AIBN) as an intiator in N,N′-dimethylformamide solution at 65°C under nitrogen atmosphere. Compositon of the copolymers synthesized in a wide range of monomer feed ratios were determined by FTIR and 1H (13C) NMR-DEPT-135 spectroscopy. The monomer reactivity ratios were determined by Fineman-Ross, Kelen-Tüdös and non-linear regression methods. It was observed that the studied monomer pair has some tendency to alternation in the chosen monomer feed ratios due to formation of intermolecular interaction through H-bonding and N → O = C coordination. The synthesized poly(NIPA-co-VP)s show temperature sensitivity (T s), higher glass-transiton temperature (T g ), thermal stability, polyelectrolyte and stimuli-responsive (temperature- and pH-sensitive) behavior and can be attributed to the class of bioengineering functional copolymers useful for application in various gene- and bioengineering processes, drug delivery systems and biomacromolecule conjugations.  相似文献   

20.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号