首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Membrane with ordered channels is the key to controlling ion sieving and proton conductivity in flow batteries. However, it remains a great challenge for finely controlling the nanochannels of polymeric membranes. Herein, two types of acid-stable Zr-metal organic framework (MOF-801 and MOF-808) with variable pore structures and channel properties are introduced as fillers into a non-fluorinated sulfonated poly (ether ether ketone) (SPEEK). The membrane incorporated with MOF-801 of a smaller triangular window (≈3.5 Å) successfully translates the molecular sieving property into the flow battery membrane, resulting in enhanced coulombic efficiency (98.5–99.2%) at 40–120 mA cm−2 compared with the pristine SPEEK membrane (97.1–98.5%). In contrast, more protophilic internal interconnected channels of MOF-808 yield faster proton highway, leading to a significant increase of voltage efficiency (93.7–84.1%) at 40–120 mA cm−2 compared with the pristine SPEEK membrane (91.7–78.9%). By regulating the ion sieving and proton conductivity, MOF-801/MOF-808 binary composite membrane exhibits synchronously improved performance in the vanadium redox flow battery system. The revealed structure–property relationship in the Zr-MOFs-based membranes provides a general guideline to design new proton exchange membranes with ordered channels for flow battery application.  相似文献   

2.
Acid recycling via cation exchange membranes (CEMs) has attracted considerable attention from traditional industries and advanced manufacturing because of the economic and environmental advantages. However, current polymeric CEMs merely have constant ion channels by the fixed groups in the matrix and lack the synergy of bi-functional sites. Herein, a series of dibenzo-18-crown-6 (DB18C6) functionalized sulfonated poly(biphenyl alkylene) membranes is reported. The resultant membranes form phase separation and ordered ion channels by the electrostatic interaction between DB18C6-H+ complexes and the  SO3 anionic sites, constructing a low-swelling synergistic hydrophilic network. The prepared membranes have high proton permeation rates of 2.98-4.85 mol m−2 h-1 and extremely low ferrous ion permeabilities, leading to a high H+/Fe2+ selectivity of ≈3153 at the current density of 10 mA cm-2, which is one order of magnitude higher than the commercial and previously reported membranes via the electrodialysis. These results provide strategies for designing bi-functional ion exchange membranes for selective ion transport via utilizing crown ether/cation complexes.  相似文献   

3.
Porous membranes with critically hydrophobic/hydrophilic phase‐separated‐like structures for use in vanadium flow battery application are first realized by solvent‐induced reassembly of a polymer blend system. Porous poly(ether sulfone) (PES)/sufonated poly(ether ether ketone) (SPEEK) blend membranes with tunable pore size are prepared via the phase inversion method. After solidification, isopropanol (IPA) is introduced to induce the reassembly of sulfonated groups and further form ion‐transport channels by using the interaction between IPA and functional groups in SPEEK. As a result, a highly phase separated membrane structure is created, composed of a highly stable hydrophobic porous PES matrix and hydrophilic interconnected small pores. The charged pore walls are highly beneficial to improving proton conductivity, while pores are simultaneously shrunk during the IPA treatment. Therefore, the resultant membranes show an excellent battery performance with a coulombic efficiency exceeding 99%, along with an energy efficiency over 91%, which is among the highest values ever reported. This article supplies an ease‐to‐operate and efficient method to create membranes with controlled ion‐transport channels.  相似文献   

4.
As a key component of low-cost anion exchange membrane fuel cells (AEMFCs), anion exchange membranes (AEMs) are far from commercial application, because of dissatisfactory alkaline stability and conductivity. Herein, a new insight is proposed to prepare high performance AEMs by constructing of confined ion channel. With an intermediate oligomer produced before the main copolymerization, novel poly(vinyl-carbazolyl aryl piperidinium) AEMs with confined sub-2-nm ion channel are successfully prepared. The unique sub-2-nm ion channel enable membranes ultrahigh hydroxide conductivity of 261.6 mS cm−1, and the state-of-the-art chemical stability over 5000 h. Moreover, the AEMs also exhibit good mechanical stability with lower water uptake and dimensional swelling. Based on the as-prepared AEMs and ionomer, fuel cells exhibit outstanding peak power density of 1.8 and 0.2 W cm−2 with Pt-based catalysts and completely non-precious metal catalysts, respectively.  相似文献   

5.
Inevitable dissolution in aqueous electrolytes, intrinsically low electrical conductivity, and sluggish reaction kinetics have significantly hampered the zinc storage performance of vanadium oxide-based cathode materials. Herein, core–shell N-doped carbon-encapsulated amorphous vanadium oxide arrays, prepared via a one-step nitridation process followed by in situ electrochemical induction, as a highly stable and efficient cathode material for aqueous zinc-ion batteries (AZIBs) are reported. In this design, the amorphous vanadium oxide core provides unobstructed ions diffusion routes and abundant active sites, while the N-doped carbon shell can ensure efficient electron transfer and greatly stabilize the vanadium oxide core. The assembled AZIBs exhibit remarkable discharge capacity (0.92 mAh cm−2 at 0.5 mA cm−2), superior rate capability (0.51 mAh cm−2 at 20 mA cm−2), and ultra-long cycling stability (≈100% capacity retention after 500 cycles at 0.5 mA cm−2 and 97% capacity retention after 10 000 cycles at 20 mA cm−2). The working mechanism is further validated by in situ X-ray diffraction combined with ex situ tests. Moreover, the fabricated cathode is highly flexible, and the assembled quasi-solid-state AZIBs present stable electrochemical performance under large deformations. This work offers insights into the development of high-performance amorphous vanadium oxide-based cathodes for AZIBs.  相似文献   

6.
The performance of alkaline fuel cells is severely limited by substandard anion exchange membranes (AEMs) due to the lower ionic conductivity compared to the proton exchange membranes. The ionic conductivity of AEMs can be effectively improved by regulating the microphase structure, but it still cannot meet the practical use requirements. Here, enhanced microphase-separated structures are constructed by the cooperativity of highly hydrophilic dual cations and highly hydrophobic fluorinated side chains. Meanwhile, the introduction of  O enhances the flexibility of side chains and facilitates the formation of ion transport channels. The dual piperidinium cation functionalized membrane (PB2Pip-5C8F) which is grafted with the ultra-hydrophobic fluorocarbon chain exhibits a high conductivity of 74.4 mS cm−1 at 30 °C and 168.46 mS cm−1 at 80 °C. Furthermore, the PB2Pip-5C8F membrane achieves the highest peak power density of 718 mW cm−2 at 80 °C under a current density of 1197 mA cm−2 without back pressure. A long-term life cell test of this AEM shows a low voltage decay rate of 1.68 mV h−1 over 70 h of operation at 80 °C.  相似文献   

7.
Design and fabrication of hierarchically structured membranes with high proton conductivity is crucial to many energy‐relevant applications including proton exchange membrane fuel cell (PEMFC). Here, a series of imidazole microcapsules (IMCs) with tunable imidazole group loading, shell thickness, and lumen size are synthesized and incorporated into a sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. The IMCs play two roles: i) Improving water retention properties of the membrane. The IMCs, similar to the vacuoles in plant cells, can render membrane a stable water environment. The lumen of the IMCs acts as a water reservoir and the shell of IMCs can manipulate water release. ii) They form anhydrous proton transfer pathways and low energy barrier pathways for proton hopping, imparting an enhanced proton transfer via either a vehicle mechanism or Grotthuss mechanism. In particular, at the relative humidity (RH) as low as 20%, the composite membrane exhibits an ultralow proton conductivity decline and the proton conductivity is one to two orders of magnitude higher than that of SPEEK control membrane. The enhanced proton conductivity affords the composite membrane an elevated peak power density from 69.5 to 104.5 mW cm?2 in a single cell. Moreover, the application potential of the composite membrane for CO2 capture is explored.  相似文献   

8.
Freezing electrolyte and sluggish ionic migration kinetics limited the low-temperature performance of rechargeable batteries. Here, an aqueous proton battery is developed, which achieves both high power density and energy density at the ultralow temperature conditions. Electrolyte including 2 m HBF4  +  2 m Mn(BF4)2 is used for the ultralow freezing point of below − 160  ° C and high ionic conductivity of 0.21 mS cm−1 at − 70  ° C. Spectroscopic and nuclear magnetic resonance analysis demonstrate the introduction of BF4 anions efficiently break the hydrogen-bond networks of original water molecules, resulting in ultralow freezing point. Based on H+ uptake/removal reaction in alloxazine (ALO) anode and MnO2/Mn2+ conversion in carbon felt cathode, the aqueous proton battery can operate regularly even at − 90  ° C and obtain a high specific discharge capacity of 85 mA h g−1. Benefiting from the rapid diffusion of proton and the pseudocapacitive character of ALO electrolyte, this battery shows a high specific energy density of 110 Wh kg−1 at a specific power density of 1650 W kg−1 at − 60  ° C. This work presents a new way of developing low-temperature batteries.  相似文献   

9.
Zinc-based flow batteries are promising for distributed energy storage due to their low-cost and high-energy density advantages. One of the most critical issues for their practical application is the reliability that results from the heterogeneous zinc deposition and dead zinc from falling off the electrode. Herein, nitrogen-doped carbon nanotubes (N-CNTs)-based composite membrane through a facilely partially embedded method is reported to enable a dendrite-free alkaline zinc-based flow battery. The results indicate that the electrically conductive N-CNTs functional layer can enhance the transport dynamics of charge carriers and homogenize electric field distribution in membrane–electrode interface, which induces the initial nucleation of metallic zinc from the carbon felt electrode to N-CNTs functional layer and further achieve a uniform and dense plating of metallic zinc in alkaline media. Thus, the engineered membrane enables a stable alkaline zinc–iron flow battery performance for more than 350 h at a current density of 80 mA cm−2. Moreover, an energy efficiency of over 80% can be afforded at a current density of 200 mA cm−2. The scientific finding of this study provides a new strategy on composite membranes design and their capability to adjust the plating of metallic zinc in alkaline media.  相似文献   

10.
Advanced charged sponge‐like porous membranes with ultrahigh stability and selectivity are designed and fabricated for vanadium flow battery (VFB) applications. The designed porous membranes are fabricated via constructing positively charged cross‐linked networks on the pore walls of polysulfone membranes. The charge density of the pore walls can be tuned by changing the crosslinking time. The positively charged pore walls can effectively retain vanadium ions via Donnan exclusion, hence keeping extremely high selectivity, while the crosslinked network effectively increases the membrane stability. As a result, the designed membranes exhibit an outstanding performance, combining extremely high selectivity and stability. The single cell assembled with the prepared porous membrane shows a columbic efficiency of 99% and an energy efficiency of 86% at a current density of 80 mA cm?2, which is much higher than Nafion 115 (93.5%; 82.3%). A battery assembled with the prepared membrane shows a stable battery performance over more than 6000 cycles, which is by far the longest record for porous membranes ever reported. These results indicate that advanced, charged, sponge‐like, porous membranes with a crosslinked pore‐wall structure are highly promising for VFB applications.  相似文献   

11.
Aqueous Zn ion batteries (ZIBs) are one of the most promising battery chemistries for grid-scale renewable energy storage. However, their application is limited by issues such as Zn dendrite formation and undesirable side reactions that can occur in the presence of excess free water molecules and ions. In this study, a nanocellulose-carboxymethylcellulose (CMC) hydrogel electrolyte is demonstrated that features stable cycling performance and high Zn2+ conductivity (26 mS cm−1), which is attributed to the material's strong mechanical strength (≈70 MPa) and water-bonding ability. With this electrolyte, the Zn-metal anode shows exceptional cycling stability at an ultra-high rate, with the ability to sustain a current density as high as 80 mA cm−2 for more than 3500 cycles and a cumulative capacity of 17.6 Ah cm−2 (40 mA cm−2). Additionally, side reactions, such as hydrogen evolution and surface passivation, are substantially reduced due to the strong water-bonding capacity of the CMC. Full Zn||MnO2 batteries fabricated with this electrolyte demonstrate excellent high-rate performance and long-term cycling stability (>500 cycles at 8C). These results suggest the cellulose-CMC electrolyte as a promising low-cost, easy-to-fabricate, and sustainable aqueous-based electrolyte for ZIBs with excellent electrochemical performance that can help pave the way toward grid-scale energy storage for renewable energy sources.  相似文献   

12.
Integrating high-efficiency oxygen electrocatalyst directly into air electrodes is vital for zinc–air batteries to achieve higher electrochemical performance. Herein, a self-standing membrane composed of hierarchical cobalt/nanocarbon nanofibers is fabricated by the electrospinning technique. This hybrid membrane can be directly employed as the bifunctional air electrode in zinc–air batteries and can achieve a high peak power density of 304 mW cm−2 with a long service life of 1500 h at 5 mA cm−2. Its assembled solid-state zinc–air battery also delivers a promising power density of 176 mW cm−2 with decent flexibility. The impressive rechargeable battery performance would be attributed to the self-standing membrane architecture integrated by oxygen electrocatalysts with abundant cobalt–nitrogen–carbon active species in the hierarchical electrode. This study may provide effective electrospinning solutions in integrating efficient electrocatalyst and electrode for energy storage and conversion technologies.  相似文献   

13.
Zn powder anode possesses great versatility compared to the Zn foil counterpart, but the rough surface with a high surface area aggravates the corrosion and dendrite growth. Herein, a dendrite-free and anti-corrosive semi-liquid Zn anode (SLA) is successfully fabricated based on Zn powder and a thickening agent. Benefiting from the rheological property, the unique anode effectively releases the stress induced by Zn plating, especially under high-current densities. Meanwhile, the dual-conductive medium, i.e., ionic and electronic, homogenizes the ion flux and allows the stripping/plating to occur within the entire anode. In a symmetric cell, the SLA anode exhibits stable electrochemical behavior with a prolonged lifespan at the current density of 5 mA cm−2/10 mA cm−2 under the capacity of 5 mAh cm−2/10 mAh cm−2. Improved durability of more than 5000 cycles is endowed when assembling an SLA anode with a vanadium-based cathode. This study provides an electrode rheology-based approach to overcome the stability challenge of powder anode for scale-up manufacturing.  相似文献   

14.
Aqueous rechargeable zinc–iodine batteries have received increasing attention in the field of portable electronics due to their high safety, low-cost, and great electrochemical performance. However, the insulated nature of iodine and the unrestricted shuttle effect of soluble triiodide seriously limit the lifespan and Coulombic efficiency (CE) of the batteries. Herein, a high-performance zinc–iodine energy storage system based on the hydrothermal reduced graphene oxide (rGO) and a high concentration zinc chloride water-in-salt electrolyte are promoted. The 3D microporous structures and outstanding electrical conductivity of rGO make it an excellent host for iodine, while the water-in-salt electrolyte effectively suppresses the shuttle effect of triiodide and improves the CE of the system. As a result, an ultra-high I2 mass loading of 25.33 mg cm−2 (loading ratio of 71.69 wt.%) is realized during the continuous charging/discharging process. The batteries deliver a high capacity of 6.5 mAh cm−2 at 2 mA cm−2 with a much-improved CE of 95% and a prominent rate performance with capacity of 1 mAh cm−2 at 80 mA cm−2. A stable long-term cycling performance is also achieved with capacity retention of 2 mAh cm−2 after 2000 cycles at 50 mA cm−2.  相似文献   

15.
Porous proton exchange membranes (PEMs) with abundant porous structures show enhanced phosphoric acid (PA) doping levels and proton transport capability. However, the high PA loss rate and serious hydrogen cross-over lead to poor membrane stability. Enhancing the stability of PA-doped porous PEMs is therefore crucial for obtaining high-performance proton exchange membrane fuel cells. Herein, a porous polybenzimidazole membrane with dense double skin layers is reported using amino tris (methylene phosphonic acid) (ATMP) constructed. This membrane effectively alleviates hydrogen permeation and PA loss in a water/anhydrous environment and exhibits enhanced stability. Surprisingly, as an organic proton conductor, ATMP has strong hydrogen bonding with PA, leading to the formation of more continuous proton transport channels. Due to the dense double skin layers protection and the synergistic mass transfer of ATMP and PA, the porous membrane shows excellent proton conductivity (0.112 S cm−1) and a H2-O2 fuel cell peak power density of 0.98 W cm−2 at 160 °C. Moreover, it presents excellent fuel cell stability, with a voltage decay rate of only 5.46 µV h−1. In addition, the porous membrane surpasses the traditional working temperature range, operating in the range of 80–220 °C. This study provides new insight into developing high-performance porous PEMs.  相似文献   

16.
The development of highly efficient robust electrocatalysts with low overpotential and industrial-level current density is of great significance for CO2 electroreduction (CO2ER), however the low proton transport rate during the CO2ER remains a challenge. Herein, a porous N-doped carbon nanofiber confined with tin-nitrogen sites (Sn/NCNFs) catalyst is developed, which is prepared through an integrated electrospinning and pyrolysis strategy. The optimized Sn/NCNFs catalyst exhibits an outstanding CO2ER activity with the maximum CO FE of 96.5%, low onset potential of −0.3 V, and small Tafel slope of 68.8 mV dec−1. In a flow cell, an industrial-level CO partial current density of 100.6 mA cm−2 is achieved. In situ spectroscopic analysis unveil the isolated Sn N site acted as active center for accelerating water dissociation and subsequent proton transport process, thus promoting the formation of intermediate *COOH in the rate-determining step for CO2ER. Theoretical calculations validate pyrrolic N atom adjacent to the Sn N active species assisted reducing the energy barrier for *COOH formation, thus boosting the CO2ER kinetics. A Zn-CO2 battery is designed with the cathode of Sn/NCNFs, which delivers a maximum power density of 1.38 mW cm−2 and long-term stability.  相似文献   

17.
Manganese dioxide (MnO2) materials have received much attention as promising pseudocapacitive materials owing to their high theoretical capacitance and natural abundance. Unfortunately, the charge storage performance of MnO2 is usually limited to commercially available mass loading electrodes because of the significantly lower electron and ion migration kinetics in thick electrodes. Here, an alternatively assembled 2D layered material consisting of exfoliated MnO2 nanosheets and nitrogen-doped carbon layers for ultrahigh-mass-loading supercapacitors without sacrificing energy storage performance is reported. Layered birnessite-type MnO2 is efficiently exfoliated and intercalated by a carbon precursor of dopamine using a fluid dynamic-induced process, resulting in MnO2/nitrogen-doped carbon (MnO2/C) materials after self-polymerization and carbonization. The alternatively stacked and interlayer-expanded structure of MnO2/C enables fast and efficient electron and ion transfer in a thick electrode. The resulting MnO2/C electrode shows outstanding electrochemical performance at an ultrahigh mass loading of 19.7 mg cm−2, high gravimetric and areal capacitances of 480.3 F g−1 and 9.4 F cm−2 at 0.5 mA cm−2, and rapid charge/discharge capability of 70% capacitance retention at 40 mA cm−2. Furthermore, asymmetric supercapacitor based on high-mass-loading MnO2/C can deliver an extremely high energy of 64.2 Wh kg−1 at a power density of 18.8 W kg−1 in an aqueous electrolyte.  相似文献   

18.
Achieving rapid ion transport through nanochannels is essential for both biological and artificial membrane systems. Covalent organic frameworks (COFs) with well-defined nanostructures hold great promise for addressing the above challenge. However, due to the limited processability and inadequate interlamellar interaction of COF materials, it is extremely difficult to integrate them to prepare high-performance proton conductors. Herein, inspired by the ingenious bio-adhesion strategy in nature, ultrafast proton conduction is achieved by taking advantage of COF membranes where TP-COF nanosheets are linked by subnanometer nanowires/lignocellulosic nanofibrils composites (SNWs/LCNFs) through electrostatic and π-π interactions to form an ordered and robust structure. Notably, the synthesized SNWs exhibited impressive proton conductivity and adhesion capacity due to their inbuilt phosphotungstic acid (HPW) molecules and multidimensional interactions. Therefore, attributed to the synergistic contribution of TP-COFs and SNWs, the composite membrane achieves ultrahigh proton conductivity (0.395 S cm−1 at 80 °C and 100% RH), superior mechanical property (109.8 MPa), exceptional fuel cell performance (71.6 mW cm−2), and superior operational stability (OCV decay rate is about 1.5 mV h−1), demonstrating outstanding competitiveness. More importantly, the proposed design concept has the potential to be applied in membranes for various electrochemical devices and molecular separations.  相似文献   

19.
Despite its merits of high specific capacity and intrinsic safety for aqueous zinc-ion batteries (AZIBs), Zn metal as anode suffers from dendritic growth and severe corrosion during battery operation. Here, an electrolyte surfactant of succinimide (SI) that occupies the compact region of the electrical double layer (EDL) at the Zn/electrolyte interface, which protects the Zn surface from the parasitic corrosion in aqueous electrolytes is reported. More importantly, both theoretical calculation and electrochemical analysis demonstrate that the occupation of SI at the EDL can restrict the self-diffusion of Zn adatoms and tune interfacial reaction kinetics during Zn deposition, thereby promoting small and dense nuclei rather than large Zn dendrites. Accordingly, SI surfactants enable a high Coulombic efficiency of 99.95% and a long cumulative plated capacity over 6800 mAh cm−2 at 20 mA cm−2 for 10 mAh cm−2. Moreover, the feasibility of SI is also demonstrated on a long-term cycling stability in Zn-VS2 batteries.  相似文献   

20.
Pre-intercalating ions between V O layers is considered to be an effective strategy to modulate the interlayer spacing of 2D vanadium oxides. However, the rigid pre-intercalated ions hardly keep stable during repeated charging/discharging process and their sizes limit the extent of interlayer spacing expansion, which inevitably lead to poor rate capability and cycle stability. In this work, aliphatic diamines are adopted as pre-intercalated guests to elastically modulate the interlayer spacing of V O layers by tuning the chain length of the organic diamine molecules. Benefiting from the strong interaction between the terminal doubly protonated amine and the polar negative oxygen bridge of the V O layers, the aliphatic diamine molecules can act as a structural stabilizer between the layers and boost fast Na ion diffusion (10−8 to 10−10 cm2 s−1). The sodium ion battery based on the first synthesized 1,6-hexanediamine pre-intercalated vanadium oxide supported on nickel foam hybrid cathode achieves a large specific capacity of 597 mAh g−1 at 0.09 A g−1, as well as superior rate performance and cycling stability. This work provides a strategy to elastically modulate 2D layered materials with tunable interlayer spacing for batteries based on large-size-ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号