首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quasi-2D perovskites have shown great potential in achieving solution-processed electrically pumped laser diodes due to their multiple-quantum-well structure, which induces a carrier cascade process that can significantly enhance population inversion. However, continuous-wave (CW) optically pumped lasing has yet to be achieved with near-infrared (NIR) quasi-2D perovskites due to the challenges in obtaining high-quality quasi-2D films with suitable phase distribution and morphology. This study regulates the crystallization of a NIR quasi-2D perovskite ((NMA)2FAn−1PbnI3n+1) using an 18-crown-6 additive, resulting in a compact and smooth film with a largely improved carrier cascade efficiency. The amplified spontaneous emission threshold of the film is reduced from 47.2 to 35.9 µJ cm−2. Furthermore, by combining the film with a high-quality distributed feedback grating, this study successfully realizes a CW NIR laser of 809 nm at 110 K, with a high Q-factor of 4794 and a low threshold of 911.6 W cm−2. These findings provide an important foundation for achieving electrically pumped laser diodes based on the unique quasi-2D perovskites.  相似文献   

2.
Quasi-2D perovskites with enlarged exciton binding energy and tunable bandgap are appealing for application in perovskite light-emitting diodes (PeLEDs). However, wide n domains distribution is commonly formed in solution-processed quasi-2D perovskite films due to the uncontrollable crystallization behavior, which leads to low device performance. Here, the crystallization process is successfully regulated to narrow the n domains distribution by introducing compound additive of ZrO2 nanoparticles (NPs) and Cryptand complexant. ZrO2 NPs can avoid the segregation of organic large and small cations by strengthening the solvent extraction capacity of antisolvent, while Cryptand offsets the poor solubility of PbBr2 by forming an intermediate state to slow down the crystallization of high-n domains. Consequently, both high photoluminescence quantum yields over 90% and a high external quantum efficiency of 21.2% are obtained in the optimized green quasi-2D PeLEDs. Moreover, the lifetime extends about four times compared with control devices. The strategy of domain controlling by compound additive provides a powerful way to develop high-performance quasi-2D perovskite optoelectrical devices.  相似文献   

3.
Perovskite light-emitting diodes (PeLEDs) have attracted attention because of their high efficiencies. However, due to the sensitivity of perovskites to ambient condition, perovskite emitter layers are generally fabricated under an inert gas environment (e.g., dry N2), which increases processing complexity and cost. Here, air-prepared quasi-2D perovskites are reported for efficient PeLEDs. It is found that the phase aggregation is the major obstacle deteriorating the characteristics of air-prepared perovskites. Through antisolvent engineering to modulate the nucleation and growth characteristics of perovskite films from precursor solution, phase aggregations are restrained. Confocal laser scanning fluorescence microscopy results demonstrate homogeneous perovskite films with uniform photoluminescence distributions. Traps at grain boundaries are passivated, and exciton transfer among perovskite phases becomes effective. Finally, efficient green PeLEDs based on air-prepared perovskites are realized with an external quantum efficiency of 15.4%. This work provides a promising strategy to fabricate cost-effective perovskite devices in ambient air condition.  相似文献   

4.
Reduced‐dimensional hybrid perovskite semiconductors have recently attracted significant attention due to their promising stability and optoelectronic properties. However, the issue of poor charge transport in 2D perovskites limits its application. Here, studies on intermediate‐controlled crystal growth are reported to improve charge carrier transport in 2D perovskite thin films. It is shown that the coordination strength of solvents with perovskite precursor affects the initial state of intermediate phase formation as well as the subsequent perovskite layer growth. Tuning the solvent composition with a mixture (5:5) of dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO) leads to the growth of highly orientated 2D perovskite films with much‐improved optoelectronic properties (faster transport by ≈50x, longer carrier lifetime by ≈4x, and lower defect density by ≈30x) than the film prepared with pure DMF. Consequently, perovskite solar cells based on DMF/DMSO (5:5) show >80% efficiency improvement than the devices based on pure DMF.  相似文献   

5.
Semiconductor micro/nano‐cavities with high quality factor (Q) and small modal volume provide critical platforms for exploring strong light‐matter interactions and quantum optics, enabling further development of coherent and quantum photonic devices. Constrained by exciton binding energy and thermal fluctuation, only a handful of wide‐band semiconductors such as ZnO and GaN have stable excitons at room temperature. Metal halide perovskite with cubic lattice and well‐controlled exciton may provide solutions. In this work, high‐quality single‐crystalline cesium lead halide CsPbX3 (X = Cl, Br, I) whispering‐gallery‐mode (WGM) microcavities are synthesized by vapor‐phase van der Waals epitaxy method. The as‐grown perovskites show strong emission and stable exciton at room temperature over the whole visible spectra range. By varying the halide composition, multi‐color (400–700 nm).WGM excitonic lasing is achieved at room temperature with low threshold (~ 2.0 μJ cm?2) and high spectra coherence (~0.14–0.15 nm). The results advocate the promise of inorganic perovskites towards development of optoelectronic devices and strong light‐matter coupling in quantum optics.  相似文献   

6.
Heterogeneous organic-inorganic halide perovskites possess inherent non-uniformities in bandgap that are sometimes engineered and exploited on purpose, like in quasi-2D perovskites. In these systems, charge carrier and excitation energy migration to lower-bandgap sites are key processes governing luminescence. The question, which of them dominates in particular materials and under specific experimental conditions, still remains unanswered, especially when charge carriers comprise excitons. In this study transient absorption (TA) and transient photoluminescence (PL) techniques are combined to address the excited state dynamics in quasi-2D and other heterogeneous perovskite structures in broad temperature range, from room temperature down to 15 K. The data provide clear evidence that charge carrier transfer rather than energy migration dominates in heterogeneous quasi-2D perovskite films.  相似文献   

7.
Making small nanograins in polycrystalline organic–inorganic halide perovskite (OIHP) films is critical to improving the luminescent efficiency in perovskite light‐emitting diodes (PeLEDs). 3D polycrystalline OIHPs have fundamental limitations related to exciton binding energy and exciton diffusion length. At the same time, passivating the defects at the grain boundaries is also critical when the grain size becomes smaller. Molecular additives can be incorporated to shield the nanograins to suppress defects at grain boundaries; however, unevenly distributed molecular additives can cause imbalanced charge distribution and inefficient local defect passivation in polycrystalline OIHP films. Here, a kinetically controlled polycrystalline organic‐shielded nanograin (OSN) film with a uniformly distributed organic semiconducting additive (2,2′,2′′‐(1,3,5‐benzinetriyl)‐tris(1‐phenyl‐1‐H‐benzimidazole), TPBI) is developed mimicking core–shell nanoparticles. The OSN film causes improved photophysical and electroluminescent properties with improved light out‐coupling by possessing a low refractive index. Finally, highly improved electroluminescent efficiencies of 21.81% ph el?1 and 87.35 cd A?1 are achieved with a half‐sphere lens and four‐time increased half‐lifetime in polycrystalline PeLEDs. This strategy to make homogeneous, defect‐healed polycrystalline core–shell‐mimicked nanograin film with better optical out‐coupling will provide a simple and efficient way to make highly efficient perovskite polycrystal films and their optoelectronics devices.  相似文献   

8.
Polariton-mode lasing in traps for the Bose condensation of dipolar excitons is considered and conditions under which this type of lasing takes place are examined. The width of the spectrum of the polariton modes involved in lasing and the role of the spatial and spectral inhomogeneity of the exciton distribution are discussed. The possibility of lasing in a system close to the exciton Bose condensation threshold is investigated in detail. The effect of inhomogeneous broadening of the exciton spectral line on the stability of steady-state lasing is analyzed. Experiments that help to reveal contributions from different physical processes to polariton-mode lasing in semiconductor structures designed for the Bose condensation of excitons are proposed.  相似文献   

9.
Tetraphenylphosphonium chloride (TPPCl) is used as an additive in the antisolvent for preparing the quasi-two Dimensional (quasi-2D) perovskite film. This strategy is not only beneficial for the morphology formation but also the phase tuning of the quasi-2D perovskite film. Highly efficient and stable perovskite light-emitting diodes (PeLEDs) were achieved with the maximum luminance of 35,000 cd/m2, the maximum current efficiency of 48.0 cd/A and the maximum external quantum efficiency (EQE) of 12.42%. Due to the reduced exciton quenching rate, improved charge carrier injection and transport ability, the electroluminescent performance of the TPPCl-based PeLEDs has been enhanced.  相似文献   

10.
Recent years have witnessed a rapid development of all‐inorganic halide perovskite in optoelectronic devices. Ultrathin 2D CsPbBr3 nanosheets (NSs) with large lateral dimensions have demonstrated exceptional photophysical properties because of their analogous exciton electronic structure to quantum wells. Despite the incredible progress on device performance, the photophysics and carrier transportation parameters of quantum‐confined CsPbBr3 NSs are lacking, and the fundamental understanding of the exciton dissociation mechanism is far less developed. Here, a ligands rearrangement mechanism is proposed to explain why annealed NS films have an increased charge transfer rate and a decreased exciton binding energy and lifetime, prompting tunneling as a dominant way of exciton dissociation to separate photogenerated excitons between neighboring NSs. This facile but efficient method provides a new insight to manipulate perovskite nanocrystals coupling. Moreover, ultrathin 2D CsPbBr3 NS film is demonstrated to have a enhanced absorption cross section and high carrier mobility of 77.9 cm2 V?1 s?1, contributing to its high responsivity of 0.53 A W?1. The photodetector has a long‐term stability up to three months, which are responsible for reliable perovskite‐based device performance.  相似文献   

11.
Compared with inverted 3D perovskite solar cell (PSCs), inverted quasi-2D PSCs have advantages in device stability, but the device efficiency is still lagging behind. Constructing polymer hole-transporting materials (HTMs) with passivation functions to improve the buried interface and crystallization properties of perovskite films is one of the effective strategies to improve the performance of inverted quasi-2D PSCs. Herein, two novel side-chain functionalized polymer HTMs containing methylthio-based passivation groups are designed, named PVCz-SMeTPA and PVCz-SMeDAD, for inverted quasi-2D PSCs. Benefited from the non-conjugated flexible backbone bearing functionalized side-chain groups, the polymer HTMs exhibit excellent film-forming properties, well-matched energy levels and improved charge mobility, which facilitates the charge extraction and transport between HTM and quasi-2D perovskite layer. More importantly, by introducing methylthio units, the polymer HTMs can enhance the contact and interactions with quasi-2D perovskite, and further passivating the buried interface defects and assisting the deposition of high-quality perovskite. Due to the suppressed interfacial non-radiative recombination, the inverted quasi-2D PSCs using PVCz-SMeTPA and PVCz-SMeDAD achieve impressive power conversion efficiency (PCE) of 21.41% and 20.63% with open-circuit voltage of 1.23 and 1.22 V, respectively. Furthermore, the PVCz-SMeTPA based inverted quasi-2D PSCs also exhibits negligible hysteresis and considerably improved thermal and long-term stability.  相似文献   

12.
2D perovskite materials have recently reattracted intense research interest for applications in photovoltaics and optoelectronics. As a consequence of the dielectric and quantum confinement effect, they show strongly bound and stable excitons at room temperature. Here, the band‐edge exciton fine structure and in particular its exciton and biexciton dynamics in high quality crystals of (PEA)2PbI4 are investigated. A comparison of bulk and surface exciton lifetimes yields a room temperature surface recombination velocity of 2 × 103 cm s?1 and an intrinsic lifetime of 185 ns. Biexciton emission is evidenced at room temperature, with a binding energy of ≈45 meV and a lifetime of 80 ps. At low temperature, exciton state splitting is observed, which is caused by the electron–hole exchange interaction. Transient photoluminescence resolves the low‐lying dark exciton state, with a bright/dark splitting energy estimated to be 10 meV. This work contributes to the understanding of the complex scenario of the elementary photoexcitations in 2D perovskites.  相似文献   

13.
Defect‐mediated carrier recombination at the interfaces between perovskite and neighboring charge transport layers limits the efficiency of most state‐of‐the‐art perovskite solar cells. Passivation of interfacial defects is thus essential for attaining cell efficiencies close to the theoretical limit. In this work, a novel double‐sided passivation of 3D perovskite films is demonstrated with thin surface layers of bulky organic cation–based halide compound forming 2D layered perovskite. Highly efficient (22.77%) mixed‐dimensional perovskite devices with a remarkable open‐circuit voltage of 1.2 V are reported for a perovskite film having an optical bandgap of ≈1.6 eV. Using a combination of experimental and numerical analyses, it is shown that the double‐sided surface layers provide effective defect passivation at both the electron and hole transport layer interfaces, suppressing surface recombination on both sides of the active layer. Despite the semi‐insulating nature of the passivation layers, an increase in the fill factor of optimized cells is observed. The efficient carrier extraction is explained by incomplete surface coverage of the 2D perovskite layer, allowing charge transport through localized unpassivated regions, similar to tunnel‐oxide passivation layers used in silicon photovoltaics. Optimization of the defect passivation properties of these films has the potential to further increase cell efficiencies.  相似文献   

14.
The charge photogeneration and recombination processes in organic photovoltaic solar cells based on blend of the low bandgap copolymer, PTB7 (fluorinated poly‐thienothiophene‐benzodithiophene) with C60‐PCBM using optical, electrical, and magnetic measurements in thin films and devices is studied. A variety of steady state optical and magneto‐optical techniques were employed, such as photoinduced absorption (PA), magneto‐PA, doping‐induced absorption, and PA‐detected magnetic resonance (PADMR); as well as picosecond time‐resolved PA. The charge polarons and triplet exciton dynamics in films of pristine PTB7, PTB7/fullerene donor–acceptor (D–A) blend is followed. It is found that a major loss mechanism that limits the power conversion efficiency (PCE) of PTB7‐based solar cell devices is the “back reaction” that leads to triplet exciton formation in the polymer donor from the photogenerated charge‐transfer excitons at the D–A interfaces. A method of suppressing this “back reaction” by adding spin½ radicals Galvinoxyl to the D–A blend is presented; this enhances the cell PCE by ≈30%. The same method is not effective for cells based on PTB7/C70‐PCBM blend, where high PCE is reached even without Galvinoxyl radical additives.  相似文献   

15.
Quasi-2D perovskites have received wide attention in photovoltaics owing to their excellent materials robustness and merits in the device stability. However, the highest power conversion efficiency (PCE) reported on quasi-2D perovskite solar cells (PSCs) still lags those of the 3D counterparts, mainly caused by the relatively high voltage loss. Here, a study is presented on the mitigation of voltage loss in quasi-2D PSCs via usage of thermal-aged precursor solutions (TAPSs). Based on the (AA)2MA4Pb5I16 (n = 5) quasi-2D perovskite absorber with a bandgap of ≈1.60 eV, a record-high open-circuit voltage of 1.24 V is obtained, resulting in boosting the PCE to 18.68%. The enhanced photovoltaic performance afforded by TAPS is attributed to the thermal-aged solution processing that triggers colloidal aggregations to reduce the nucleation sites inside the solution. As a result, formation of high-quality perovskite films featuring compact morphology, preferential crystal orientation, and lowered trap density is allowed. Of importance, with the improved film quality, the corrosion of Ag electrode induced by ion migrations is effectively restrained, which leads to a satisfactory storage stability with <2% degradation after 1200 h under nitrogen environment without encapsulation.  相似文献   

16.
With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A?1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices.  相似文献   

17.
朱卓亚  张帅  杜文娜  张青  刘新风 《红外与激光工程》2021,50(11):20210619-1-20210619-11
当激子与腔光子间的相互作用强于激子和腔光子的衰减时,激子能级与腔模之间产生强耦合,形成的准粒子被称为激子极化激元。激子极化激元有效质量小,同时具有较强的非线性,在慢光和低功耗发光器件等方面具有巨大的应用前景。传统Ⅲ-Ⅴ族无机半导体材料激子束缚能较弱,而有机半导体材料非线性系数较小等问题限制着室温条件下激子极化激元的应用。卤化物钙钛矿材料具有高吸收系数、长扩散长度、高缺陷容忍度以及低非辐射复合率等一系列优异的光电性质,并且具有高的激子束缚能和振子强度,成为研究光与物质强相互作用的理想材料。文中从卤化物钙钛矿结构和法布里-珀罗(Fabry-Pérot, F-P)微腔类型两方面介绍了近年来卤化物钙钛矿与F-P微腔强耦合在激子极化激元方面的研究进展。首先回顾了极化激元的研究背景和卤化物钙钛矿的基本光电特性,其次介绍了三维钙钛矿和二维层状钙钛矿各自的特点以及与F-P微腔强耦合的相关研究,随后对钙钛矿的自构型和非自构型F-P微腔激子极化激元的调控与相关应用进行了讨论,最后总结和展望了卤化物钙钛矿激子极化激元面临的挑战以及未来研究方向。  相似文献   

18.
Chiral perovskite materials have intrigued enormous interests because of their appealing chiroptical properties and tailorable non-centrosymmetric structures. However, it remains challenging to realize high-efficiency blue emissive circularly polarized luminescence (CPL) of intrinsic chiral perovskite nanomaterials at room temperature. Herein, a robust and versatile electrospinning strategy is reported for in situ construction of chiral 2D and quasi-2D perovskite nanosheets (PNSs) protected in polymer hybrid nanofibers. It is found that quasi-2D chiral PNS/polymer possesses inherent chirality and enhanced CPL properties at room temperature compared to 2D counterparts. Notably, CPL emission color of chiral quasi-2D PNS/polymer can be tuned from deep blue to sky blue, and a high luminescence dissymmetry values up to −8.0 × 10−3 can be achieved. Different perovskites, polymers, and nanofibrous structures are expanded to explore the universality of polymer protected PNSs. Significantly, compared to spin-coated film, the stabilities of quasi-2D PNS/polymer film are greatly improved due to the effective protection of polymer. The obtained PNS/polymer hybrid nanofiber films can be conveniently implemented for circularly polarized light emitting diode devices. This study may open up a new avenue for the scalable fabrication of chiral perovskite nanomaterials of interest and their applications in the CPL related fields.  相似文献   

19.
Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era.  相似文献   

20.
Quasi‐2D metal halide perovskite films are promising for efficient light‐emitting diodes (LEDs), because of their efficient radiative recombination and suppressed trap‐assisted quenching compared with pure 3D perovskites. However, because of the multidomain polycrystalline nature of solution‐processed quasi‐2D perovskite films, the composition engineering always impacts the emitting properties with complicated mechanisms. Here, defect passivation and domain distribution of quasi‐2D perovskite films prepared with various precursor compositions are systematically studied. As a result, in perovskite films prepared from stoichiometric quasi‐2D precursor compositions, large organic ammonium cations function well as passivators. In comparison, precursor compositions of simply adding large organic halide salt into a 3D perovskite precursor ensure not only the defect passivation but also the effective formation of quasi‐2D perovskite domains, avoiding unfavorable appearance of low‐order domains. Quasi‐2D perovskite films fabricated with a well‐designed precursor composition achieve a high photoluminescence quantum yield of 95.3% and an external quantum efficiency of 14.7% in LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号